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1. GENERAL INTRODUCTION

The concept of risk has played a very significant role in
the theory of production, resource allocation, and the theory
of statistical decisions. It is not intended here to include
in any comprehensive manner the various economic and statistical
aspects of the concept of risk in economic theory. Only a
limited objective of analyzing the implications of a certain
type of probabilistic concept of risk in models of planning
for optimal production in a linear programming framework has
been attempted. The plan of the discussion covering this topic
will be as follows:

In Chapter 1 is presented a general introduction to
economic models involving risk and uncertainty at different
phases and restrictions, and constraints in the form of either
equalities or inequalities. This is followed by Chapter 2,
which presents a brief survey of some of the most important
operational results available in the theory of linear pro-
gramming. These operational results have variations in
some or all of the parameters such as prices, input coeffi-
cients, and resources. The concept of risk implied by these
variations is taken purely in the statistical sense in terms
of probability measures. The distinction between prior and
posterior statistical distribution is not made. Chapter 3
examines the analytical methods of sensitivity analysis and

the parametric approach applied to linear programming models



with variation in the parameters. The concept of risk implied
in these variations is not statistical and the emphasis here
is on deriving simple decision rules for guaranteeing a degree
of safety. 1In Chapter 4 an empirical model of probabilistic
planning applied to the production situation of a farm in the
Chincha Valley of Peru is presented. The model used is a
variant of a simple linear programming model with eleven crops
and four types of quarterly restrictions: (1) water avail-
ability, (2) land, (3) capital and (4) labor. The variations
in the net incomes are the net prices in the objective function
caused by the variability of yield and prices received by
the farmers. The empirical example is considered only for
illustrative purposes since it provides a very simple case
of production planning under risky conditions. Hence, the
lines of generalizing the empirical results, which have limita-
tions due to the data situation and special conditions of
the particular geographic region of Peru, have been indicated
in appropriate places in Chapter 4.

Finally, a broad summary of all principal results is

presented in Chapter 5.



1.1. Risk in Economic Theory,
Models with Equalities

Many hypotheses about individual or corporate economic
behavior, under uncertainty and risk, attempt to deal with the
problem of behavior under the assumption that it is reason-
able for the behavioral unit to maximize gain or profit.

The difference between uncertainty and risk must be point-
ed out here. Each term has had distinct meanings in different
parts of economic literature. The term "risk" is character-
ized in a model in which the entire probability distribution
of the outcomes has formally been taken into account, whether
the character of that distribution is considered subjective or
objective. The term "uncertainty"” is applied to models in
which the above stated conditions are not the case.

It is very important to have a realistic theory explain-
ing how individuals choose among alternate courses of action
when the consequences of their actions are not fully known to
them. A survey of the literature of approaches to the theory
of choices in risk-taking situations has been given by Arrow
(3).

The probability theory represents the sustained efforts
of mathematicians and philosophers to provide a rational basis
on which expectations may be derived from past events. Roy
(33) stated that there are major objections when one attempts

to maximize expected gain or profit. The ordinary man has to



consider the possible outcomes of a given course of action on
one occasion only, and the average or expected outcome, if
this conduct were repeated a large number of times under
similar conditions, is irrelevant. Also, the well-known
phenomemon of the diversification of resources among a wide
range of project or investment situations is not explained.

Since the origin of the species, men have been making
decisions, and other men have been telling them how they either
make, or should make, decisions. wvon Neumann and Morgenstern
(30) developed a theory of maximizing the expected utility.

In order for their results to be volid, however, their assump-
tion that rational individuals are choosing the right utility
functions must hold true,

The fundamental problem of production is the optimum allo-
cation of scarce rescurces between alternative ways of achiev-
ing an objective. It can be seen that the objective may be
the maximization of the firm's profits or the minimization of
costs, Cases exist, however, in which besides profit maximi-
zation or cost minimization, the objective includes risk mini-
mization., If the decision-maker is willing to sacrifice
profit in exchange for security, the result depends on his be-
havior.

The firm is engaged in a typa of "game against nature,”
an opponent which is really not a malevolent, maximizing rival

acting purposely to thwart the firm's designs. Yet, one pos-

J



sible approach to the firm's decision-making is to assume it
acts as if the intention for optimal solutions were that for a
game in which Nature did indeed have those attributes.

A list of the best-known criteria may be found in the
work of Van Moeseke (27).

Expected profit is an appropriate maximum in recurrent
"small" decisions, but where disaster is possible one may pre-
fer reduced profit with less risk. 1In terms of the probability
distribution of the relevant outcome variables, the question is
whether to consider the mean only or also the variance or other
measures of dispersion or skewness.

Markowitz (26) has applied concepts of programming under
uncertainty to selection of investment portfolios. Assume that
one unit of money is to be subdivided into amounts XyreeaX, for
the purchase of corresponding amounts of n assets. Then
I xi-l. Assume known the joint probability distribution

i
P(rl,....rn) of return on assets 1,....,n, with means,

"i = Iri daF
and covariance
The problem is to choose what can be called an efficiency port-

folio in accordance with the a priori probability distribution

F.

The traditional rule used in economic theory has been to



discount the expected return uy for each asset by some formula
that takes account of its degree of risk as measured by Og47
and maximize total discounted expected return. In fact, this
rule is hardly ever used in practice; the overwhelming practice
is to diversify holdings, whereas the rule leads in general to
the selection of one single preferred asset.

Markowitz defines the efficiency of a portfolio
(xl,...xn) in terms of the relation to its expected return,

=193 ux

and its variance of return,

02 = i cijxixj
to the expected return y and variance 32 of alternative port-
folios of the same purchase price.

i"i'i;i
The portfeolio (xl,...xn) is called efficient if there exists
no such alternative portfolio with

'0,-25;02

R
except possibly with both equality signs holding.

In the classical techniques for applying calculus to cer-
tain types of optimization problems, it is possible to use the

classical theory to solve analytically for an optimal solution



in terms of the various parameters appearing in the problem.
The following example is given to illustrate the above-

i Consider a machine part which is pro-

mentioned possibility.
duced on a particular lathe in a machine shop. The diameters
of the parts turned out will not always be precisely the same,
but will vary somewhat from one piece to another due to a var-
iety of causes. The diameter x of any particular piece can be
considered to be a random variable. The mean p of this random
variable can be varied appropriately modifying the lathe setting.
It is given a density function for x as f(x;u). In order to
pass inspection the diameter x must lie in the interval in
which x,<x<x,. If x<x,, the piece must be scrapped. If
XX, the piece can be reworked. The shop under consideration
does not rework pieces. Instead, it sells pieces with x>x,
to another shop at a price p, each, for rework. Each piece
which passes inspection is sold at price p>p1. The cost of
raw materials, labor, and machine time for each piece which
enters production is k. It is desired to determine the value
of u which maximizes the expected weekly profit.

If w pieces are machined per week, the expected number
which must be scrapped is

¥ |
w] f(x:n) dx
0

1Th1s example is taken from (19, pp. 58-60).



when the integral is simply the probability that the diameter
of any piece will be less than Xq. Similarly, the expected
number which will be scld for rework is

x

w[ " f(x;u) dx

3
where x is the maximum diameter which any piece can have.

m

Thus the expected weekly profit P is

Xy X
p(u)-rwtl-I f(x;u)dx - I f(x;u)dx)
0 X,
*a
+ leI f(x;u)ax-wk
*3
It is clear that the absolute maximum of P(p) will not occur
at the boundries where u=0 or X because these are not meaning-
ful solutions. Thus, the value of y when P takes on its
maximum must be a solution to
20, wo-wip "L smante-p) [ ™ 2 £0xsu)ax)
m o W " 1), TR
2
In the case where x is normally distributed with mean y and
variance oz, one has the uniqgque solution

o2

o Dl |

X,+x
- 12 2 +

P
k 5

S8ince the solution is unigue, this value of u must yield the
absolute maximum of the expected weekly profit.

A method for obtaining the relative maximum or minimum



values of a function F(x,y,z) subject to a constraint condi-
tion ¢(x,y.,z)=0, consists of the formation of the auxiliary
function,

G(x,y.z) = F(x,y,z) + Aé(x,y,2)
subject to the conditions

3G . 3G . 96
x - 0 3y 0;i g3 = O

which are necessary conditions for a relative maximum or mini-
mum. The parameter ), which is independent of x,y.z, is called
a Lagrange multiplier.

The method can be generalized. If one wishes to find
the relative maximum or minimum values of a function F(xl,xz,...,
x,) subject to the constraint conditions ¢y (Ryreeex )=0,
¢2(x1,...xn)-0,...¢k(x1,...xn)-o. we form the auxiliary
function

G(xl,xz,...xn)sr+11¢1+12¢2+...1k¢k
subject to the (necessary) conditions

3G

sx—l-o= 5';;-0? -cc---‘rx; 50

where ll,lz.....lk. which are independent of Xy oXgraeasX ,
are the Lagrange multipliers.

Here attenticn will be placed on solutions of inequality
systems. When a decision problem requires the minimization

of a linear form subject to linear inequality constraints, it

is called a linear program. By natural extension, its study
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provides further insight into the problem of minimizing a con-
vex function whose variables must satisfy a system of convex

inequality constraints.
1.2. Models with Inequalities

Mathematical programming (48) is concerned with the
problem of maximizing or minimizing a function of variables
that are restricted by a number of constraints. Interest in
this problem arose in economics and management sciences, where
it was realized that many problems of optimum allocation of
scarce resources could be formulated mathematically as pro-
gramming problems. The introduction of large high-speed elec-
tronic computers, moreover, made it possible in principle to ob-
tain numerical solutions, provided efficient mathematical meth-
ods and computational techniques could be developed. These
methods cannot immediately be derived from classical tools,
such as the method of Lagrange multipliers. The latter has
effectively been applied to extremun problems in which the
variables were only restricted by equality constraints but it
is hardly, if at all, possible to extend such a method to in-
equality-constrained extremun problems. However, mathematical
programming problems nearly always consist of many variables
and constraints.

Mathematical programming has three aspects:

l. The application or technological problem, i.e. the form-
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ulation of the model, the gathering of data, the inter-

pretation and study of the results, etc.

2. The mathematical problem, i.e. the development of mathe-
matical techniques for a certain class of models.

3. The computational problem, i.e. the study of the computa-
tional aspects of a mathematical method and the development
of computer codes for it.

Mathematical programming problems can be divided into
four classes:

l. Deterministic, continuous models; the set of points,
satisfying all constraints-to be called feasible region-is
connected; the objective function, i.e. the function to
be optimized is continuous. In this class can be found:
a. Linear programming, the following reference may be

consulted (11).

b. CQuadratic programming, i.e. the problem of minimizing
a convex quadratic function, subject to linear con-
straints.

C. The problem of minimizing a general convex function,
subject to linear constraints. Most of the method
which was developed for this problem can be con-
sidered as large-step gradient methods.

d. Convex programming, i.e. the problem of minimizing a
convex function (or maximizing a concave function) in

a convex region.
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Deterministic, discontinuous models; the feasible region
is not connected or (and) the objective function is not
continuous. In this class one finds:

a. Integer linear programming. The solution has to
satisfy the additional requirement that it consists of
integers.

b. Mixed discrete continuous programming. Only part of
the variables in the optimum sclution must be integer-
value. Many well-known case studies can be formulated
as a mixed programming problem, e.g. the travelling-
salesman problem and the fixed-charge problem.

Stochastic models; the coefficients in the constraints

or (and) in the objective function are random variables.

In this class one has the chance-constrained programming

problems. A simple example is a linear programming problem

with a stochastic requirements or objective vector.

Dynamic models; the coefficients in the constraints or

(and) in the objective function are dependent on a para-

meter (e.g. the time). For each value of this parameter,

it is desired to solve the problem. Dynamic models can

often be solved by using Bellman's dynamic programming (7).

In many cases the problem can also be formulated in a

static way which may then give rise to a large programming

problem.

Broadly speaking, mathematical programming problems deal
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with determining optimal allocation of limited resources to
meet given objectives:; more specifically, they deal with situ-
ations where a number of resources, such as men, materials,
machines, and land, are available, and are to be combined to
yield one or more products. There are, however, certain re-
strictions on all or some of the following broad categories,
i.e.: on the total amount of each resource available, on the
quantity of each product made, or on the quality of each pro-
duct. Even within these restrictions there will exist many
feasible allocations. Out of all permissible allocations of
resources, it is desired to find the one or ones which
maximize or minimize some numerical quantity, such as profit

or cost,
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2. PROGRAMMING MODELS UNDER RISK

In ordinary and usual linear programming (L.P.) problems
Max c'x
subject to
Ax<b
x>0 (2.0.1)
It is assumed that all the parameters (i.e. the coefficients
of the objective function), the inequalities, and the resource
availabilities are exactly known without error. This assump-
tion is relaxed when some or all elements of the set (c,A,b)
are probabilistic, namely, the distribution approach of stoch-
astic linear programming. Two special approaches, the decision-
rule approach of chance-constrained programming, and the two-
stage approach of programming under uncertainty, are available.
Most linear programming problems involve errors in either
the input-output matrix, resource availabilities, or prices.
Some of the more usual methods for reducing the effect of
errors are:
1. Replacing the random elements by their expected values.
2. Replacing the random elements by pessimistic esti-
mates of their values.
3. Recasting the problem intc a two-stage problem in
whose second stage one can compensate for inaccuracies
in the first stage activities.

These methods are called the expected value solution, the "fat"
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solution, and the slack solution. (24)

The so-called "fat" formulation is characterized by the
following reasoning. The decision-maker has to decide on some
vector x of activities before he can observe the values of A
and b. After he has made his choice, he is confronted with a
particular A and b and can see whether or not x has satisfied
the constraints., The difficulty, though, is that his prechosen
x may not be feasible for the observed A and b. What the "fat"
formulation prescribes is, that one restrict oneself to the
convex set of those x which are feasible no matter what values
of A and b will subsequently be observed.

A more realistic statement of the problem is what could be
called the "slack" formulation. It involves converting the
problem to a two-stage problem which can be described roughly
as follows:. The decision-maker is supposed to choose a non-
negative x, then observe a value of the random matrix A and
the random vector b, and finally compare Ax with b. The vector
X may or may not be feasible. But whether feasible or not,
one is going to allow the decision-maker after the fact, to
make another decision y to compensate for discrepancies between
Ax and b, based on his original decision x and the later-
observed A and b, but at a penalty cost.

The linear inventory problem is an example of this kind.
Here x is the amount of inventory which the storekeeper must

have on hand, b is the later-to-be-observed random demand, A
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is a nonrandom matrix of relevant technology coefficients and
y is the second-stage decision, embodying two kinds of activ-
ities. If the demand exceeds the inventory, the storekeeper
must go out on the open market and at a penalty cost, buy goods
to take care of the excess of demand over supply. If the
inventory exceeds the demand, he will have to scrap the excess.
This loss is a penalty due to not having made a better choice
of x. This is a more realistic way of looking at the problem
than the "fat" solution because it keeps the decision-maker

in business after he has made his choice of x and the random
variables have been observed. A simple example is considered
in Dantzig (11).

2.1. Variation in Price Coefficients

The importance of correct specification of errors can be
illustrated with respect to an ordinary linear program.
Suppose one has variation in price coefficients. Then the

problem will become

Max (c+y) 'x
Subject

Ax<b x>0

Analytically, it is important to be able to give an economic
interpretation to this type of error which may occur. Consider
the error y associated with the price coefficient which may

originate in the following ways:
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1. Realized prices may not correspond with planning

prices.

2. The cost of production may change after the plan has

been in operation.

3. An individual price depends essentially upon the yield

of the activity.
In this case, if one supposes that there are no errors in the
resource supplies and input-output coefficient, and if the
errors y are normally distributed with mean zero, then to
maximize the expected value of objective function, we set Yy
equal to their expected values, i.e. E(y)=0 and apply the
standard simplex procedure to the original linear programming
problem.

Freund (l14) developed a model in which risk is taken into
account in the selection of the optimum plan. Freund's model
corresponds to the ordinary linear programming problem with
the added generalization that it takes account of the varia-
bility of activities' net revenue due to sample variation in
yield and price. He assumes that the risk aversion function

takes the general form;

y= 1-e %
where y is utility
z is the net revenue
¢ is the risk aversion constant.

The larger the ¢ is, the greater the risk aversion. Freund
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then shows that this problem can be treated as a quadratic

programming problem, and, as such, a solution can be obtained.
2.2. Stochastic Linear Programming

Stochastic linear programming attempts to deal with the
situation in which the elements of one or more of the three
sets of coefficients have a probability distribution as opposed
to just being constants. The problem can be reformulated in
the following manner. It is desirable to optimize (maximize
or minimize)

F = (c+y)'c
subject to the restrictions

(A+a)x < (b+p)
where n”,cj.b1 are some constants and °1jk'aik’yjk are random

variables with probability distribution in which
BYi™ys BOi5c™Magy  BRax e

. on? 2 2 2
BAY g Myg) =0y g7 ElOy4 -y 4)%05447 and Etsik—"ﬁifL081
These means and variances may not necessarily be known.

Let it be assumed (46) that it is known that the tech-

nological coefficients lie within giver upper and lower limits

and that
+
+
°y IPby IP]
— +
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where those values written with a minus or plus sign as super-
script are known. It is then natural to ask what can be in-
ferred as to the range of possible variation of the optimum
of the objective function.

Vajda (46) has shown that

+
Min Echi Min fcixi Min Zcix1

< <

tanxizp; i‘ijxizpj Eaijxizp;

and

+*
Max fcixi Max icix1 Max Icixi

A
[,

+ — ¥
iaijxifhj iaijxiipj z‘f}”iipj

Stochastic linear programming consists of solving the
ordinary linear program when it is given that the components
of A,b, and/or c are no longer constants but rather variables
with known and/or unknown probability distributions.

There have been four basic types of approach to this
problem:

l. The probabilistic approach.

a. Passive approach
b. Active approach

2. Parametric approach.

3. Probabilistic-parametric approach.

4. Diversification approach.

The probabilistic approach is an empirical approach
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pioneered by Babbar (5) and Tintner (44). They have tried to
estimate the probability distribution of the objective function,
its optimal expectation, and the confidence interval about the
expectation. Tintner (45) subdivides his approach into what

he calls the "active" and the "passive" approaches.

The passive approach (also termed the "wait and see"
approach) derives, by numerical methods if necessary, the
distribution of (max z=c'x) (and other z's corresponding to
basic solutions other than the optimal basic solution) under
the assumption of a known probability distribution function of
all the random parameters, i.e. (A,b,c) of the problem. This
approach assumes that all admissible situations, i.e. for
all admissible variations of the random parameters, the condi-
tions of the simple nonstochastic linear program are fulfilled
and the maximum achieved. The active or "here and now"
approach to stochastic linear programming may be specified

as follows:

Maximize z = ¢'x
. under the conditions:
Ax<BU
where U is a matrix with m rows and n columns with elements
uij' such that

(m) w3420  Fou
=1
when x is a diagonal matrix with elements of the vector x in

13~

the diagonal, and B is a diagonal matrix with the elements of
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the vector b in the diagonal. The probability distribution of
(max z) will depend upon the allocation matrix U-[uij] )
which defines a set of controlled (i.e., nonrandom) variables
which may be appropriately chosen to optimize a risk preferred
function (i.e., a utility function associated with the objective
function). Let z, denote the value of the objective function
under the active approach and let U and v represent two
different sets of resource allocations that could be selected

by the policy-maker (or the entrepreneur, for example, in a

production situation). 8ince in every case all resources

|
1]

are to be fully allocated by condition (m), the selections of |
U and U represent only different relative allocations for every
resource i=l,...,m, The resulting probability distribution
for "max :a' induced by these two allocations may then be com-
pared for purpose of deciding upon the optimal allocation.
Sengupta (40) analyzes a method of characterizing the
distribution of the objective function values corresponding to
the set of extreme points in the solution space for both the
active and the passive approaches. Truncation refers to the
selection of extreme points that are neighbors, that is to say,
to the optimal extreme point. The sensitivity of objective
function values corresponding to truncated solutions is
analyzed here in terms of stability properties, stability being

measured in terms of variance. From an economic point of view,

the approach outlined here offers a theory of the second best,
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since it specifies the set of conditions under which a value
of the objective function, that corresponds to the optimum
solution, on the average may have higher instability than
another value of the objective function, that corresponds to a
truncated solution, under the assumed conditions of stochastic
linear programming.

The parametric approach (17) is a technique for dealing
with stochastic variation in the ccefficients of the objective
function. Two sets of coefficients [cal and [c"y] are con-
sidered. A parameter t which can take on any finite values is
introduced. The coefficients

cj - c'j-l-tc"j
are used and the problem is dealt with by the usual simplex
method. The values of the variables depend on the set of
basic variables but not on the value of t which appears only
in the objective function. If the solution space is considered,
the choice of t means geometrically the choice of a preferred
direction. Because there are constraints, there must be bounds
on the feasible region. By varying t, it can be discovered
where these bounds lie. This and other types of parametric
approach are given in (29).

The probabilistic-parametric approach (Madansky (22)) con-
siders a type of problem in which the constraints are not
always met. Among all x and y whose probability of feasibility
is at least P, it is desired to find the y which minimizes
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c'x+f'y and also to determine the value of x which minimizes
E min (a'x+f'y) where E is the expectation operator.

Here f'y is the penalty paid for the deviation of the
actual from the expected value c.

Madansky (24) also considers the problem where one wishes

to maximize

Prob [min (c'x+f'y)<k]
y
for some fixed preassigned k. Considering the case where only

¢ is random, the suggestion was to replace the vector c by the
vector ¢ where Prob [cgﬁvl-y and to solve the determinantal
problem for xy. Then one could look for the largest y

and concomitant Xy such that Xy and y(xv) are feasible with
probability P or more and such that F(chY)-k' Unfortunately,
in multi-dimensions t:‘Y is not unique and although xT is a
continuous function of Cyr it is not necessarily the case

that by increasing y Prob [F(chY)gk] will increase.

In the diversification approach, Markowitz (25) dealt
with the stochastic problem in a completely original manner.
He proposed minimizing the variance of these coefficients for
their given expected values or alternatively maximizing their
expected values for a given variance.

In a standard stochastic problem, the coefficients are
usually mean values of sample means and are not greatly
different from the population means. It is Tchebycheff's

inequality which states that
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— 02
Prob (|x-u|>b) < .
This fact must be taken into consideration when the confidence
region of the objective function is calculated.

Babbar (4) has gone into some theoretical detail in
deriving the general case for the distribution of the objective
function when all three sets of coefficients are stochastic.
But he concluded that unless the elements have normal distribu-
tions, the problem of obtaining the distribution of the objec-
tive function and a confidence region about its expected value
become unmanageable in most cases.

Application to economic models of stochastic linear pro-

gramming will be found in Morrison (29).

2.3. Chance-Constrained Proqrammingl

A new conceptual and analytical vehicle for problems of
temporal planning under uncertainty, involving determination
of optimal (sequential) stochastic decision rules is defined
by Charnes and Cooper (8).

The problem of stochastic (or better, chance-constrained)
programming is defined as follows. Select certain random
variables with known distributions in such a manner as (a) to
maximize a functional of both classes of random variables sub-

ject to (b) constraints on these variables which must be main-

1This part is based on the papers by Charnes and Cooper
(9), J. K. Sengupta (13, Chapter 9), Kataoka (21), J. K.
Sengupta (37).
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tained at prescribed levels of probability. More loosely, the
problem is to determine optimal stochastic decision rules under
these circumstances. An example is supplied in (10). Temporal
planning in which uncertainty elements are present, but in
which management has access to "control variables” with which
to influence outcomes, is a general way of characterizing
these problems. Thus, queuing problems in which the availability
of servers, customers, or both are partly controllable fall
within this classification. It should be noted that the
constraints to be maintained at the specified levels of prob-
ability will typically be given in the form of inequalities.

Chance-constrained programming admits random data varia-
tions and permits constraint violations up to specified
probability limits, Different kinds of decision rules and
optimizing objectives may be used so that under certain
conditions, a programming problem (not necessarily linear) can
be achieved, that is deterministic in that all random elements
have been eliminated. Existance of such "deterministic equiva~-
lent" in the form of specified convex programming problems is
established for a general class of linear decision rules (9)
under the following three classes of objectives: (1) maximum
expected value ('E modael'); (2) miniwmum variance ('V model')
and (3) maximum probability ('P model').

A chance-constrained formulation would replace the

ordinary linear programming problem with a problem of the
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following kind:

Optimize f(c,x)=Max c'x

Subject to Prob (Ax<b)>a, x>0 (2.3.1)
A,b,c are not necessarily constant but have, in general,
some or all of their elements as random variables, The vector
a contains a prescribed set of constants that are probability
measures of the extent to which constraint violations are
-dnittod.n Thus, an element 0<a, <l is associated with a con-

straint jfl aijxjgpi to give

Prob (jgl a;4%3<by) >a, (2.3.2)
a double inequality which is interpreted to mean that the ith
constraint may be violated but at most 81-1-61 proportion of
the time.

Here it is proposed to examine important classes of
chance-constrained problems and to obtain deterministic equiva-
lents that are then known in certain cases to be convex pro-
gramming problems. It is to be emphasized, however, that opti-
mization under risk immediately raises very important questions
concerning a choice of rational objectives. Questions can
arise, for example, concerning the reasonableness of an expected
value optimization. Without attempting to resolve these
issues, it should be noted that the evaluators secured for one

objective are not necessarily correct or optimal when applied

to the same problem under an altered objective.
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It is assumed that a choice of values for decision vari-
ables x will not disturb the densities associated with the
random variables in A,b,c. Then we may formulate the general

problem in terms of choosing a suitable decision rule

x = ¢(A,b,c) (2:.3.3)

with the function ¢, to be chosen from a prescribed class of
functions and applied in a manner that guarantees that x
values, as generated, will satisfy the chance constraints of
(2.3.1) and optimize f(c,x) in (2.3.1) with reference to the
class of rules from which the ¢ of (2.3.2) is to be chosen.

By assuming that the matrix A is constant (i.e. non-
random) I will also be restricted by the rule (2.3.3) to
members of the class

x = Db (2.3.4)

where D is a'n x n matrix whose elements are to be determined
by reference to (2.3.1).

We will examine all possible rules of form D and, for
important classes of objective and statistical distributions,
in order to be able to characterize situations in which a
deterministic equivalent will be achieved-irrespective of the
D choice thus yielding a convex programming problem.

The expected value model ('E model') is then

maximize Ee¢' x

under conditions Prob (Ax<b)>a (2.3.5)
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x=Db
substituting (2.3.4) into the objective function of (2.3.5)

one obtains

E(c'Db) = (Ec)' D(EDb)
it will assume that b and ¢ are uncorrelated, then it will
define the vectors

M' (Be)' 5w, ' = (Eb) '
then

Min - uc'Dub

Denoting the 1*0 row of the matrix A by ai' and (b-ub)
by b and assuming normality of distribution for the variates
(ai'.D b - Bi)' parts of the constraints of (2.3.4) may be
written as

Prob (ai'nb - bi < D) = Prob (bi - ai'Db > 0)

= Prob (si-ai'Dﬁiﬁpb1+ai'nvb):pi

Assuming E(ﬁi-ai'DS)2>0. the above can be normalized and

ith constraint can be written fully as
-a," Db -uh.+a,' D u
Prob 1 1 i - > i1 E%]> ay (2.3.6)
{_ ~ ~ — / ~ =
E(b;-a; D b) E(b;-a;, D b)

by the assumption of normality, the left-hand side of the argu-

ment, i.e. (b - ai'D ﬁi) / (S - ay ‘D g;’

is a standardized
normal variable with zero mean and unit varianéﬁ, so that

(2.3.6) is replaced by
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- '
ub1+ai D ub

ri ->_ ai ‘2.307,

’Eiﬁi - ‘1' D 5)!
where

2

Y e K
P (w) = (/ZT) 1[ e Zay
w

Usually for normal distribution a,>0.5 is taken, then the

equation (2.3.7) can be solved as

“uptag' D ouy
lizsi-ai' D S)I

-1
<Py “(ay) T -qy (2.3.8)

where q,;>0 for all Ls AE @ 0.5,

The system (2.3.8) which involves nonrandom variables
(i.e.), deterministic values only can be further reduced to a
convex programming problem by introducing new variable vy and

writing (2.3.8) as

Vail %
'nbi+‘i'D“b5 vi<-~q; E(by-a,'D b)"<0

or

_ = .
pbi ai'D TR I E(bi-ai'b b) “>0

which can be further simplified by squaring both sides, since
nonnegativity is assigned to all expressions between inequality
signs i.e.,
-a,' "
a3 PHp=Ve2~¥p,

—qi2 E(Si-ai‘bb)2+v1230
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with vizp for each i. Hence, the equivalent convex program
for chance-constrained programming (2.3.5) is

Minimize -uc' D My

under the conditions

2 2 2 2 2
-q4 E(ai'Db-bi) +qy (ubi—ai'oub) v, >0

where the problem (2.3.9) is a convex programming problem in

the variables D and v

For the minimum variance ('V model')

Min E(c'x-c®'x") 2

under the conditions (2.3.10)

Prob (Ax<b)>a

x=Db

where the objective is to minimize a generalized mean square
error i.e. taking all relations between the cj into account,
it is intended to minimize this measure of their deviations
about some given preferred values z%=c®'x°.

It is easy to achieve the following deterministic
equivalent to (2.3,.10)

Min E(c'Db--c"x')2

under conditions

ubi-ai'Dub-viio

-qizE(ai'Db-bi)2+q12(ubi—ai'Dub)2+v1230
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vi:p

This deterministic equivalent is again a convex programming
problem,

The maximum probability ('P model') turns to a version of
the satisficing approach. 1In this approach the c''x" com-
ponents are specified relative to some set of values - e.g. as
generated from an aspiration level mechanism - which an organ-
igation (an individual or a business firm in the present con-
text) will regard as satisfactory whenever these levels are
achieved. Of course, when confronting an environment subject
to risk, the organization cannot be sure of achieving these
levels when effecting its choice from what it believes are
available alternatives. On the other hand, if it does not
achieve the indicated c”'x" levels or, more precisely, if it
believes that it cannot achieve them at a satisfactory level
of probability, then the organization will either (a) reorient
its activities and 'search' for a more favorable environment
or else (b) alter its aspirations and, possibly, the probabil-
ity of achieving them,

The model is Max Prob (c'x>c®'x"?)

under the conditions

Prob (Ax<b)>a (2.3.11)

x=Db

If the same rules and assumptions are utilized as before

to reduce this to a deterministic equivalent, it then becomes
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Max v /w
° ]

under conditions
uc'n B~V 0 (2.3.12)

- E(c'Dh-c"x')2+H.2:p

ubi-ai'D ub-vizp

250

-qi2 E(ai'Db-bi)2+q12(ub -a;'D ub)z—vi
: v, >0

This problem can be solved using fractional programming
methods; for more detalls see (9).

Sengupta (13) points out two aspects which may be noted
about this method. The first aspect is that it characterizes
the problem only within a very restricted class of decision
rules, and the operational efficiency of the method must be
determined by further experimentation. In other words, one
could specify other types of deterministic equivalents (6)
which would subsume the cases considered here. Secondly, the
decision rules here are not analytic, i.e., each time they have
to be solved with the appearance of new data. An extension of
this idea of deterministic equivalent in terms of recursive
programming may be helpful, although it will involve nonlinear
difference equations that are very difficult to solve.

Shinji Kataoka (21) introduced a new objective function,

which is suitable for stochastic programming, utilizing Charnes'’



33

and Cooper's model., That is

Max £ (2.3.13)

Subject 0  proh (c'x<f)=a (2.3.14)

i Prob (Ax<b)>g (2.3.15)
x>0

It should be noted that the expected value of profit is
not always considered a good measure for the optimality cri-
terion. Even though a policy x dominates other policies in
the expectation of profit, it may be more risky in that the
chance of getting a very low profit may be greater than for
other policies because of the dispersion of its distribution.
For this reason, the lower allowable limit f defined by
(2.3.14) a special form of (2.3.15) for a given probability
o is maximized instead of the expected value profit.

A case is considered in which the bi's and cj'l are ran-
dom variables, but the aij" are constant. Transportation
| and production horizon problems belong to this category if
customer demand and commodity price are random. This is
called a transportation type problem.

Kataoka has made the following assumptions and formula-

tions.

A.l. The random variable bi has a normal distribution with
2

i
The probability in (2.3.15) can be transformed as

mean value Sl and variance o,
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b-B, 343%™
Prob (§ a8 4%4<by) = Prob (cb > ubi )

i

then the left hand side of the argument is a normalized random
variable with zero mean and unit variance. Hence the proba-

bility condition, (2.3.15) is replaced by

L a,.x.~b
19%47°4
6(—g——m> 8,
by
or
-1
wherea
2
-1 [* ¥/
G(x) = (/2N 1[ e '2ay
X

usually it is considered that 8,>0.5; then G-I(etlgp.

A.2, The vector ¢ has a multinormal distribution with mean
value vector Ei(cl.cz.....cn) and a dispersion matrix V.

The variance of e'x is x'Vx. Hence

Prob (c'x<f)=Prob (c'l'a* < f-E'x) - I‘f_alx’
/xTVX T /xR /R

where 2
-1 =Y/
I(x) = (/ZN) 1 I o 2 4

-~

Y

then for (2.3.14) is

f=g ' x+1" L () /TR
Finally Kataoka has a maximization problem
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Max fI-E'x-i-I-l(a) /TR (2.3.16)

under the conditions
Ax<5'+c-1(a Yo

Kataoka also transforms a model to a more general stochastic
programming problem in which the components of matrix A are
random variables; for more details see (21).

Sengupta (37) considers three generalized standpoints.
First, the assumption of normality is replaced by a chi-square
distribution, which has a nonnegative range and hence more
applicability to economic problems of production planning; and
a confidence interval for the optimal solution vector is worked
out on this basis. Second, the relevance of chance-constrained
programming to sensitivity analysis of optimizing economic
models is briefly indicated. Third, the applicability of
chance-constrained decision rules to problems of development
planning through investment programming is discussed.

Sengupta (37) assumes that the elements aij,bi, of A and
b respectively are taken to be mutually independent chi-
square variates with means ;ij and b, and these are denoted
by xij (aij) and xz(bi) respectively. He mentions two
points about the reascnableness of this assumption. First,
in most economic problems of production and resource alloca-
tion, the input coefficients '1j represent coefficients of

production function and therefore these must be nonnegative.
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Similarly, the resource vector must be nonnegative. Seconu
a chi-square, which is closely related to the normal (e.g.,
a normal variate truncated at y>0 results in a chi-square)
has properties very similar to a normal distribution (e.g.,
reproductive properties) and hence approximations can easily
be worked out by means of normal tables whenever needed.

In the derivation of his model, Sengupta assumes for a

moment that b is not random. By transformation (2.3.1)

becomes
h, £ 8 %
n _ i 15%4
Prﬁb(x.i(jzl ij) : TiJ?‘T) 3_ ai (2.3.17)

or, alternatively as,

n n
— — 2
F. (b L Bia%.7 L & x:) > a (i=1,...n)

where fi (w) is the cumulative distribution function of a

central chi-square variate with degrees of freedom N=I ;ij' i.e.
3

n W n
=2 72 1t [0/ aup-ty2) a
0

Since the ordinary chi-square tables give the various signifi-
carice points for w for a given degree of freedom, it would be

possible to compare the exact values of

n _ n_ .
w= b I a . .x o Sl P
AT R
satisfying the inequality (2.3.17). For example, if d1-.990

(i.e. the tolerance measure) and I Eij-7.0, then from the chi-

3
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square table one finds that
Prob(x; (7.0) < wg)=.990

implies a value of w°-18.4753. Therefore, if it is taken
that w>w,, this would satisfy a tolerance measure of 99% or
higher. Since, for any preassigned value of tolerance measure
a; and the value of N=I Elj. one can find a positive value of
Yo from the chi-square table.

The chance-constrained programming model (2.3.1) then is

finalized as a convex programming problem of the following

type.
n
Minimize -¢c'x= = I cjxj
i=1
under the conditions
n _ n _ 2
b L L >0
Loy 97979 0, P97 2
where

qi’"o xjgp

For a general case, Sengupta uses the F distribution when
b is also random and he obtains the following concave pro-

gramming problem.
n

jflcjxj

under the restrictions

Maximize c'x=

5. n _ n_ , n
L a,.x.)=k, (L a (I a > 0
APt i L AR S j_l‘ij’ >

xjio
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where Ki is obtained as follows.

n
r=( E a )(I Bead /B0 2 g m)
qun 13737 15 21907000 0, 0197

M,= z -S
j_l‘ij "

therefore

Prob (F(M,,M,) < 1/r) > ay
then

K;=1/x,

Sengupta (37) considers that at the macroeconomic level,
chance-constrained interpretations are most appropriate for
the restrictions of a linear programming model applied to
development planning. At the microeconomic level, the chance-
constrained model is applicable most appropriately to situa-
tions of portfolio investment allocation and the holding of
assets when a margin of safety is desired.

Further interesting results can be obtained assuming
another kind of distribution with nonnegative range such as

the exponential, the gamma or the beta distribution.
2.4. Safety First Principle

In the economic world disasters may occur. For a great
many people, the idea of a disaster exists and the principle
of "safety first" asserts that it is reasonable and probable

in practice that an individual will seek to reduce as far as
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possible the chance of a catastrophe occurring.

A single disaster is a discontinuity in one's pattern of
behavior and in one's scale of preferences, viz. death, bank-
ruptcy or a prison sentence.

A, D. Roy (33) has developed the safety first principle
in terms of minimizing the upper bound of the chance of a dread
event, where the information available about the joint proba-
bility distribution of future occurrences is confined to the
first and the second order moments only.

From a formal standpoint, the minimization of the chance
of a disaster can be interpreted as maximizing expected utility
if the utility function assumes only two values, e.g. one
if disaster does not occur, and zero if it does. It would
appear that this formal analogy is scarcely helpful, since in
the one case an individual is trying to make the expected pro-
portion of occurrences of disaster as small as possible, while
in maximizing expected utility he is operating at a different
level of satisfaction.

A complete hypothesis about individual or corporate eco-

nomic behavior under uncertainty must specify three things.
It must describe the way in which expectations are formed from
experience of the hard facts of life, the objectives which the
entity under examination is trying to achieve, and the oppor-
tunities present for attaining such ends.

It may be possible that the outcome of economic activity,
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which is regarded as disaster, is not independent of the ex-
pected value of the outcome. Thus, a person may be prepared
to revise the level of disaster downwards if the expected return
is at the same time raised. For example, he may at one and the
same time regard a sepculotive loss of 10 percent as a disaster
if the expected gain is only 5 percent, while, if the expected
gain is 15 per cent, he will only get excited if his loss ex~
ceeds 25 per cent. Once again, such individual psychology can
no tfloubt be interpreted in terms of utility function, but such
development will not be pursued here. In the following discus-
sion, the disaster level of the outcome is taken to be constant.
Let it be supposed, then, that the principle of safety
first is adopted and that, when confronted with a range of
possible actions, we are concerned that our gross return m
should not be less than some guantity d. With every possible
action, this outcome is not certain. There is coupled with m
a quantity o (the standard error of m) which is, very roughly,
the average amount by which the prediction m is expected to be
wrong. In the following, it is assumed that m and ¢ are known
precisely, whereas in fact they must be estimated from informa-
tion about the past. This raises all kinds of problems, which
are beyond the scope of this discussion, since estimates of m
and o, say i and 8, will themselves have sampling distributions.
Thus a full analysis of the problem should discuss simultaneous-

ly not only behavior under uncertainty but also actions under
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uncertain uncertainty.

In the particular application of the principle of safety
first which is examined here, (33), it is postulated that m
and ¢ are the guantities that can be distilled out of our know-
ledge of the past. The slightest acquaintance with problems of
analyzing economic time series will suggest that this assump~
tion is optimistic rather than unnecessarily restrictive.

Given the values of m and o for all feasible choices of
action, there will exist a functional relationship between
these quantities, which will be denoted by F (o,m)=0. There
may be a whole family of such relationships; in this case F
(og,m)=0 is their envelope. Since it is not possible to deter-
mine with this information the precise probability of the final
return being 4 or less for a given pair of values of m and o,
the only alternative open is a calculation of the upper bound of
this probability. This can be done by an appeal to the
Bienaymé~Tchebycheff inequality. Thus, if the final return is

a random variable z then

02
Prob (|z-m|>m-d) < ?;:;;5
If, then, in default of minimizing P (z<d) , one operates
on 02/(m-d)2, this is equivalent to maximizing (m-4d)/o.
Telser (43) postulates a particular attitude toward risk
with stems from Roy's paper dealing with the theory of asset

holding. He asks what assumptions make about about entre-
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preneurial behavior in the face of uncertainty and whether or
not entrepreneurs maximize their expected income. Suppose an
entrepreneur wishes to select a portfolio of assets so as to
maximize expected net income. Then he would buy only one asset,
namely, that whose price is expected to increase the most. If
he is right, he would gain a great deal, but conversely, if he
is wrong he would lose a great deal. It has been observed that
people diversify their portfolios, hence reject the hypothesis
that entrepreneurs maximize expected net income.

However, entrepreneurs do prefer larger net incomes to
smaller net incomes. Suppose an entrepreneur considers all his
actions and strategies and for each action calculates the prob-
ability that the income resulting from the action, which is a
random variable, falls short of a disaster level. For each ac-
tion a there is a probability distribution of net income I which
can be written Prob (I<c; a) where c is some constant. One
computes the Prob (I<r; a)=p, where o<p<l, and r is the
disaster level of income. This disaster level of income, r,
could be associated with bankruptcy or with something less
dramatic.

Suppose that the entrepreneur does not want the probability
of his net income falling short of r to exceed a. Hence he
will not choose any action such that Prob (I<r; a)=p>a. By
this means, all his actions can be put into one of two classes.

The first class consists of all the actions a such that Prob
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(I<r; a)>a and the second class consists of all the actions
a such that the Prob (I<r; a)<a. All the actions in the
second class shall be called admissible.

Then the entrepreneur will choose that action a of the
admissible actions such that his expected income is at a maxi-
mum, Mathematically this means that the entrepreneur chooses

the action a so that:

Max I I
a

Subject to

Prob (I<r; a)<a

It would appear that such a rule of behavior requires
that the entrepreneur knows the probability distribution of I
for any action a that he might choose.

Fortunately we may appeal to the Tchebycheff inequality
which permits one to set an upper bound to the Prob (I<r; a)
even when one does not know the probability distribution of I.

The Tchebycheff inequality permits one to assert that:

Q
[ %

Prob (|I-I|>K) < 5
- TK

where K>0, oz-varianco of I and f;mean of 1

It is not hard to show that

2
Prob (I<r) < -:ﬁ——r
T (I-x)
This means that when ~:—9—I < g then Prob (I<r)<a
(I=-x)“ — .

Accordingly,
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02

—F—>=<a
(I-x)° —

becomes the risk restriction which is used.

It is assumed that the entrepreneur knows az and I for
each a, but that he knows nothing more about the probability
distribution of I for each a.

This formulation of the safety ~ first principle differs
from that of A, D. Roy. He assumes that entrepreneurs minimize
the probability of disaster. If they did, then their expected
net income for that action which minimized the probability of
disaster could be less than zero, i.e. they could be expected
to lose money on their portfolio. This implies that there is
no asset which the entrepreneur can hold without risk, that is,
without the chance of gain or loss.

Sengupta (39) attempts to generalize the decision rules
under chance-constrained programming from the viewpoint of
safety first principles based on Tchebycheff-type proabbilistic
inequalities. The latter inequalities are utilized to define
distribution free tolerance levels. The optimization criterion
of chance~constrained programming based on the mean and vari-
ance is extended to a more generalized formulation based on the
Kolmogorov-Smirnov's statistic on the maximum discrepancy of

the population and sampling distributions.
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3. PARAMETRIC MODELS AND THE SENSITIVITY

ANALYSIS APPROACH

We are treating two categories of problems relating to
the same general question: What is the effect on the solution
of a change in the given data of a problem? This question may
arise after an optimal program has been found, but may equally
arise at the beginning, if one wishes to explore the set of
optimal programs by considering certain data as parametric
variables. More specifically, we shall call problems of post-
optimization those in which definite modification of given
data is made in the matrix of coefficients A, the requirements
vector b or the cost or profit c¢. We shall call parametric
problems those in which the data vary in a continuous manner;
then the problem is to study the variation of the optimal pro-
gram as a function of the (variable) values of certain data.

In its most general form, in which the data varies as an
implicit function of several independent parameters of arbi-
trary degree, this problem has not been solved. The only case
which is really well known is that where the parameters occur
in the first degree, especially where a single parameter occurs
linearly in b or c.

In the formulation and solution of linear-programming
problems, one essentially assumes at least initially, that all
values of the coefficients are given and exact. Actually,

such coefficients are derived from analysis of data and
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usually represent average values or best-estimate values.
Accordingly, it is most important to analyze the sensitivity
of the solution to variations in these coefficients or in
the estimates of these coefficients. Stated still another
way, one seeks to determine the range of variation of the
coefficients over which the solution will remain optimal.
Sensitivity studies of this sort are known as parametric
linear programming.

Without a knowledge of the probability distributions of
the coefficients, questions regarding sensitivity of solutions
can presently be answered only in a limited sense. As noted
by Gass (15, p. 123) not much has been accomplished to date with
respect to sensitivity analysis for variations in the coeffi-
cients in the matrix of ‘1j and detailed study of the effects
of variations of either the objective function cost coeffi-
cients or the constant on the right-hand side has been limited
to special cases. Needless to say, much research re-
mains to be done in the area of parametric programming.

3.1. Parametric Programming and
Sensitivity Analysis

Methods of sensitivity analysis which concentrate on the
optimum set of basic activities (i.e., optimum solution vec-
tors x° and yo) may be appropriately called parametric pro-
gramming, since they essentially consider the set of restric-

tions to be placed on the variation of the parameters, (A,b,c,)
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such that the optimum activity-mix x° say still retains its
optimum character.

A major task in the development of realistic linear
programming models is the gathering of accurate and reliable
numerical values for the coefficients. Hence, it is impor-
tant to study the behavior of solutions to linear programming
problems when the coefficients of that problem are atlowed to
vary. This type of investigation is the function of parametric
linear programming.

Once some linear programming problem of practical interest
has been solved, we may discover that one or more of the
prices were incorrect, one or more of the bi were wrong, and
perhaps a decimal point was misplaced in some aij' It may
even turn out that some variable of interest or some constraint
was omitted from this problem.

It is the purpose to show how to keep to a minimum the
additional computational effort required to take care of
above problems, In many cases, it is not necessary to solve
the problems over again. A relatively small amount of work
applied to the optimal solution will suffice. In other cases,
however, there is no alternative but to go back to the begin-
ning and resolve the problem.

There are seven specific problems. These can be briefly
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1.

2.

4.

7.
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1

How much can the price vector c be changed in some

specified way before the optimal solution obtained

will no longer be optimal?

For a given change in ¢, how do we proceed to a new

optimal solution if the original solution is no
longer optimal?

How much can the requirements vector b be changed
in some special way before the optimal solution
will no longer be feasible?

If a given change in b makes the optimal solution
nc longer feasible, how do we proceed to a new
optimal solution?

How can the addition of another wvariable (vector)
be accounted for?

How can the insertion of an additional constraint
be incorporated into the system?

Changes in the matrix elements a4°

The technique of how to handle these problems is given in
(2,15,18).

Consider the problem of allocating labor to different

jobs.

Saaty (34), a schedule of allocating labor (in the shipping

The labor available is a variable function of time.

1

Chapter 11).

In

Most of this section has been taken from G. Hadley (18,
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operation) whose available amount is a function of time, to
different tasks, in order to minimize the total cost, is given.
The problem is cast in linear programming form in which all
the coefficients are parameterized. The dependence of the
optimal value on the parameterized coefficients leads to a
sensitivity study.

Perhaps the most important operational approach of
sensitivity analysis arises when we consider the sensitivity
of the extreme value of the objective function in the neighbor-
hood of the optimum by obtaining a series expansion for the
objective function (38). Denote the primal and dual problems

in standard matrix notation as

Primal: Max F = ¢'x
subject to

Ax < b X

Iv
]

Dual: Min W= y'b
subject to
A'y > ¢ Yy 2o

where x and y are column vectors of n components, A is a
matrix of m rows and n columns and prime over a variable de-
notes transposition. Now assuming the above to be a regular
linear programming problem (i.e., abstracting from degeneracy
and other peculiarities), let x° ana y° be the optimal solu-

tion vectors respectively with the associated set Ao,co,b°.
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Denoting by v the common value F° = w° and then following
Saaty's (35) procedure one could derive easily the following

partial derivatives:

?_‘.’.a. = xo (i)
dc
av o

-y (44)
ab®
IV 0.0

= -X. Y (1i1)
5&11 3 ¥4

where A = (aij)
provided, of course, such expansions around the optimal point
(xo,yo) are valid, i.e., the vector ¢ has to be in the interior
of the cone associated with the solution vertex. These sensi-
tivity indices have been further generalized by considering
the optimal value v = F® = W° as a function of a vector
of parameters, say time t in its different phases. Averaging
of such indices over a series of steady-state time periods
gives a method of evaluating changes in the neighborhood of
the optimal objective function. As Webb has remarked on the
operational implications of these sensitivity indicators:
These practical results are of value in determining
the required accuracy of basic data systems, evaluating
the significance of management changes in parameters,
determining most significant parameters and the
detecting of trend in the operation.
Sengupta (38) said that two things must, however, be pointed

out about such a type of sensitivity indicator, especially
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the relation (iii) appropriately sealed. First it may offer
a great help by way of developing working rules for screening
a set of observed data on the coefficients ’ij' just like the
statistical rules for rejection of outliers in practical work
of statistical estimation. Secondly, these indicators dependent
as they are on the duality theorem of linear-programming are
not necessarily such that they can be applied to any basic
feasible solution (or the objective function corresponding to
it) other than the optimal basic feasible solution. In other
words, this type of sensitivity analysis is strictly appli-
cable to the optimal objective function and the associated
optimal solution vectors x°, yo. Hence, when it is possible
to wait and see the range of observed variation in the input-
coefficients and then pick the optimal pair (x°,y°) for a
specific aij or a collection of them, the above type of sen-

sitivity analysis, partial as they are, may be of great help.
3.2. Range Analysis

Let us point out Le Chatelier's (36) principle which has
the following statement:

If the external condition of a thermodynamic system

is altered, the equilibrium of the system will tend

to move in such a direction as to oppose the change

in external conditions,
An extension of Le Chatelier's principle is as follows: in
linear programming problems, for any small change in the cost

coefficients cy the change in Xy will be smaller every time a
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new constraint is added to the system,

As noted by Gass (15) the investigation of parametric
programming as applied to the variation of the coefficients
of the objective function originated in the study of a dynamic
(multiperiod) product inventory problem in which a manufacturer
of a seasonal item must determine optimum monthly production
schedules, so that customer demand can always be satisfied by
a combination of current production and overproduction (i.e.,
inventory) from previous months. Here, one seeks to minimize
the sum of costs due to output fluctuations (e.g., overtime,
hiring and layoff, etc.) and to inventories.

One parameter linear programming program as considered
by Gass and Saaty (17) may be stated mathematically as:

Let §<A<¢ where § is any arbitrary, algebraically small,
but finite number and ¢ is any arbitrary, algebraically large,
but finite number. For each A in this interval, find a vector

X = (xl, Koo ee xn) such that

n
Min jzltcj + Ac'j)xj (3.3.1)
n
subject to jEla”xj-b1 (i=1,...m)

X420 (3m1,500) (3.5.0

where c'j,cj,alj and b1 are constants.
Let's assume that this problem is non-degenerate and that

a basic feasible solution of equation (3.3.2) is already avail-
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able. Then solving their problem by the simplex technique we
have two cases:

1. A solution exists for A=§. The optimality-criterion
function zj-cj can be represented as a linear
function of A, namely

zj--cj - aj+ABj

Hence, for an optimum solution for A=§, one must

have
u,j-l-ﬁﬁjio (j-l,z,-..n)
Defining
-Q
A = max s | or -», if all g8.>0
T By<0 By =
and
-a
T= min —J1 or 4=, if all B, <0
B4>0 By :

The minimum solution will then be obtained for
all such that
A<a<X

1t 1 = +» then the solution is optimum over all admissible
values of A, §<A<¢. If, however, X is finite, then, in
particular X;-ak/sk for some particular 8,>0. If all the
corresponding xikio' then no minimum (optimum) solution will
exist for A>X. If, however, at least one X, >0 then one can
introduce a new vector Pk into the basis (by the simplex method

technique). This new basis will result in a new range of opti-
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mality on 1, namely:

Tm) ' <A <X”

Thus, b¥ successive iterations, one can proceed from one range
of values of A to the next, and completely cover all admissible
value of i, §<A<s.

As noted by Gass (17), the various ) and X that arise
are called characteristic values of A, while the corresponding
optimum soluticns are called characteristic solutions.

2. No finite optimum solution exists for A=§., In attempt-
ing to determine an optimal (minimal) solution where A=§,
ona has a column kX, such that Bk+68k>0. However, one cannot
introduce a now vector into the basis because all xijgo.

a. 1f Bk:p. then no finite minimum solutions exist

for any
b, If 820, then ck+xsk>o will hold for all

. %x
l(ll - - B-;

Hence, no finite minimum sclution will exist for §<A<d;.
If all aj+xiaj£0. then an optimum solution will exist
for li, and 11 can be detarmined by xl-min(-aj/Bj).
Bj>0
The characteristic solution holds for A{%A<}A,. and one can

then proceed as in the first case.

1f all uj+1iaj>o for at least one value of j, then a new
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basis can be obtained, and one can continue, finally obtaining
a solution as in the first case, or the knowledge that there
are not values of A for which a finite minimum solution exists.

Summarizing (17) we have seen that:

1. By a modification of the general simplex procedure,
it is possible tc investigate systematically and
solve the cne parameter objective-function problem.

2, Given any finite minimum solution, we can determine
a set of characteristic solutions and the associated
characteristic values for all possible values of the
parameter.

3. A solution is minimum over a closed interval of A.

4., The set of A for which minimum solutions exist is
closed and connected.

The generalization of one-parameter linear programming
problem to the case of the parameterization of the objective
function with n parameters has been outlined by Gass and Saaty
(16).

For the case of n=2, one seeks to minimize
n
j£1(c1+11c'j+12c'j)xj
and, generalizing on the method for one-parameter problem, one
must determine the convex region in (11,12)-plane whose
points satisfy

ay*A)B44A,74<0 (3=1,2,...n)
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Gass and Saaty consider two methods for so doing, namely,
the double descriptive method (28) and the two-dimensional
graph of inequalities, and illustrate their parametric pro-
gramming procedure by the latter process.

The parametric-programming problem involving the right-
hand-side coefficients can be stated mathematically (15) as
follows:

Let 0<8<B. For each 6 in this interval, find a
vector x = (xl.xz...xn) such that

n

min I
n j-lcjxj

subject to
n

jilaijxj-bi-wb1 (i=1,2,...m)

:j:p (§=1,2,...n)
This problem, however, can be considered in its dual formula-
tion in which case one obtains a parametric objective function
problem of the form considered before, which can then be solved
by the procedure described therein.

In the general case Saaty (34) considers a more general
parametric-programming problem in which all coefficients .1j'
cj, and b1 are function of time. This problem can be cast in
linear programming form in which the coefficients are functions
of time. In fact, many linear programming problems occurring

in application may be cast in this parametric form. For



example, in the petroleum industry it has been found useful to
parameterize the outputs as functions of time. In Leontieff
models, this dependence of the coefficients on time is an
essential part of the problem. Of special interest is the
general case when inputs, the outputs, and the costs all vary
with time, When the variation of the coefficients with time
is known, it is then desired to obtain the solution as a func~
tion of time, avoiding repetitions for specific values.

This procedure requires sclving sets of simultaneous
genaral (not necessarily linear) inequalities in t, resulting
from the conditions :j-cjgo and as Saaty observes is generally
cumbersome except for problems involving the parameterization
of the coefficients of only a few of the basis vector.

Another approach using the saddle point properties is
the primal-dual method.

Primal: Max c'x Dual: Min y'b
Ax<b A'y>c
x>0 y>0

If we define &=(A+3A, b+8b, c+8c) by definition of a saddle
point to

(8c'~y'8A) b&x-8y (8b-8Ax) >0
where the first part is termed the corrected change in probabil-

ity and the second term adjusted capacity.
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3.3, Other Measures

In an ordinary linear programming problem with a given
set of statistical data, it is not known generally how reliable
is an optimal basic solution and for that matter, any other
basic feasible solution. One of the consequences of an ordinary
small variations of the elements of the coefficient matrix,
the elements of the resource vector or those of the vector of
net prices in the objective function. Some methods of para-
metric programming have been developed and applied in situations
where the parameters of the problem are known to change in a
certain way.

An alternative form of sensitivity analysis is specified
by considering solutions other than the optimal one and thereby
initiating an approach to the theory of the second best.

This type of measurement divides the set of all feasible
solutions into two subsets, the first conta ning all solutions
except the basic feasible ones, the second containing only the
basic feasible cnes (i.e., the set of vertices of the convex
polyhedron) ., For an ordinary and well-behaved linear program=-
ming problem, e.g., the primal maximization problem

Max z=c'x

subject to

Ax<b
xgb (3.3.1)

if the solution exists, then the second subset could be sub-
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divided further into disjoint subsets, the first containing the
maximum value and the objective function and the corresponding
optimal solution and the second containing the rest. With a
given objective function, it is possible to order the basic
feasible solutions belonging to the latter subset in an in-
creasing order according to objective function values. This
permits us a working rule to define second best (or more
precisely 'truncated') values of the objective function. For
a detailed mathematical treatment of several theorems connected
with truncated solutions of a stochastic linear programming
problem the following reference (40) may be consulted.

Now let us denote the variations of the parameters (A,b,c)
by an index set q or (A,b,c)q where g=1,2,...,Q0 runs over only
admissible values. An admissible value is any value of the
set (A,b,c)q which satisfies the conditions of an ordinary
linear programming problem in the sense that the above described
subsets containing the best, the second best, etc. values of
the objective function are non-empty. For any fixed value of
q and, hence, the set (A,b,c)q of a linear programming
problem mentioned in (3.3.1), let the index k-l.z....,xq
denote the set of basic feasible solutions. It is denoted
by F (k)(z) the value of the objective function for a fixed gq

q
and a particular k. Now define
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(1) . (x) = ces
rq bl:x Ipq (z) I k=1,2, th]

and K$i]  (3.3.2)

q

(3) . (k) - .
Fy H;x Fg ™ (2) | k=1,2,...,K

F P wmax (¢ %) (2) | k=1,2,...,K_ and %$i, K$3)
q 2 q q

It is assumed without loss of generality that our basic

feasible solutions are so defined that Pq(k), Fq(j) and Pq(p’
are strictly positive for all admissible q and that by con-
struction
(1) > F (3) > F (p) > 0 3.3.3
Pq q q ( )

since the weak inequalities

(3 , p P 45,

(1)
F > F g2

q q

can be easily reduced to strict inegualities by defining that
each of the indices i1, j and p may contain more than one point
(i.e., more than one selection), provided they give rise to the
same value of the objective function. For example, if there
are three points (i.e., three basic feasible solutions) in the
sequence k-1.2,...,Kq for a fixed sample g, whicl. give

rise to the identical maximum value Pq(i’, then the super-
script i contains these three points, so that in the definition
of truncated maxima rq‘j), the condition k$i has to be inter-
preted accordingly with suitable modifications. From now on

it will be designated Fqli) the regular maximum, i.e., trun-



61

cated maximum of zero order (or, the best solution), Fq(j) as
the truncated maximum of the first order (or, the second best
solution) and Fq(p) as the truncated maximum of second order
(or, the third best solution) and assume that the parameter
variation are such that these three maximum values are generated
for each admissible k, satisfying the conditions of an ordi-
nary linear programming problem.

We note that there is an infinity of solutions between
rqti’ and Fﬁ‘j’, i.e., the convex combination as moves from one
to zero. However, we restrict ourselves only to the vertex
points (i.e., basic feasible solution) for the derivation of a
decision rule because the set of basic feasible solutions is
finite and countable on the one hand and the activity vectors
entering into the basic feasible solution are linearly inde-
pendent, implying that the instrument variables included in
the set of activity vectors are linearly independent.

Now we can consider the three truncated maxima F (i’,

q
F (3 and Pq(p) of order zero, one and two, respectively, as

q
defined in (e.e.2) and the following two lemmas which charac-
terize the truncated maxima (41).

Lemma 1. Let Ax<b denote a set of constraints, which to-
gether with the nonnegativity requirement x>0 define a closed
and bounded convex set in the real domain. Then there exists

another closed and bounded convex set, which is a proper subset

of the convex set defined by Ax<b, x>0 and which has as
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its extreme points those of Ax<b except for one which is
eliminated. In other words, any extreme point in Ax<b, x>0
can be eliminated and all convex combinations of those remaining
will define another bounded and closed region in the real
domain,

Lemma 2. No two distinct sets of (m-1l) of m bounding
hyperplanes which intersect at (xol...,xom) can both pass
through a second extreme point.

And let us define over all admissible q=1,...,Q the

g (8)

(s) by E (rq(s)) and the variance of q

expected values of Fq
by Var (rq"’) where s=i,j or p. From the relation (3.3.3)

it readily follows that
(1) (3 (p)
E(rq ) > B(Fq ) > E(Pq )

if we find
(c) (3) (p)
Var (rq ) < Var (Fq ) € Var (rq )

the optimal value Pq‘i) is said to be stable. If, however,

it turns out that

(3 (i)
Var (Pq ) < vVar (Fq )

and this difference in variance far outweights the difference
in expected values it might be more reasonable to accept the
second best solution Fq(j) which is more stable in terms of
variance than the best one, Fq(i).

Sengupta (38) added two comments. First, the results

in the theory of second best are applicable only for "wait-
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and-see"” or passive situation. An active approach could be
introduced, however, as is done in stochastic linear program-
ming by introducing additional decision variables controlled
by the decision-maker. Secondly, the above type of sensitivity
indices, especially if modified to include the active approach,
is very closely related to operational measures of sensitivity
developed in physical sciences. As an example of the latter
one may mention that the sensitivity of a circuit is usually
expressed as the ratio of the difference between the maximum
and minimum values of the output quantity to its mean value,

i-ﬁ. r

u max - u min
mean

Sensitivity of a circuit =

where y = value of output quality.

The operations researcher (20) is often faced with devising
models for operational systems., The systems usually contain
both probabilistic and decision-making features, so that we
should expect the resultant model to be quite complex and
analytically intractable. This has indeed been the case for
the majority of models that have been proposed. The exposi-
tion of dynamic programming by Richard Bellman (7) gave hope
to those engaged in the analysis of complex systems, but this
hope was diminished by the realization that more problems
could be formulated by this technigque than could be solved.
Schemes that seemed quite reasonable often ran into computa-

ticnal difficulties that were not easily circumvented.
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Howard (20) in his work provides an analytic structure
for a decision making system that is at the same time both
general enough and yet computationally feasible. It is based
on the Markov process as a system model, and it uses an
iterative technique similar to dynamic prograrming as its
optimization method.

For a system operating under a fixed policy, a knowledge
of the total expected rewaré of the process constitutes a
complete understanding of the system. The most interesting
cases arise when there are alternatives available for the
operation of the system. In general, the problem is to find
which set of alternatives of policy will yield the maximum

total expected reward.
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4. APPLICATION OF A MODEL OF

PROBABILISTIC PROGRAMMING

Here we will try to show some application of the methods
so far surveyed to the optimum organization of agricultural
production in the Chincha Valley, Peru for illustrative purposes
only. The applications are based on the data of a linear pro-
gramming problem considered by Amorin in his thesis (1), where
he pointed out that in the Chincha Valley uncertainty exists
about the optimum combination of crops produced on any farm.
This is reflected by the variety of different crops produced
by the farmers of the area and also in the variations of yields
rates and net return from the use of resources, especially
capital and water.

His objectives of his study were as follows:

(a) to define the optimum combination of crops which
maximizes the net income of small farms (i.e., a
representative farm), considering the limitations of
capital, land, labor and water in the Chincha Valley.

(b) to analyze capital restrictions at selected levels,
since capital is one of the most critical limitations
in Peru.

(c) to define the amount of land best suited for the
resources of water, capital, and labor available on
the farm.

The conclusions of his study were: (1) that the small
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farms of the Chincha Valley have an excess of family labor
and (2) the main resource restrictions are water and capital.

He used linear programming techniques to solve his problem.
4.1. Definition of the Problem

We will use almost the same model as that of Amorin,
which is designed to specify the plan which will give maximum
income, considering the limitations of capital, water, land
and labor; however the variations of incomes due to variation
of prices of the products in the market are allowed in our

case, Now for any given crop we have the relation

Var (Income) = Var (price x yield)
= (yield)2 x Var (price) (4.1.1)
if the price element only is random.

In the Chincha Valley eleven different crops were defined.
These were crops that have been usually produced there with
acceptable yields.

An estimate of net income and its standard deviation
per hectarea by activities (crops) found in the area is

shown in Table 1.
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Table 1. Annual net income by crop and its standard dnviationl

Crop Income Standard deviation of income
X, Squash 9,023.00 94.9894
x, Peas 7,617.13 87.2761
x5 Sweet potato 6,927.99 83.2345
x, Tomato 11,535.51 107.4034
Xg Hybrid corn 6,030.39 77.6555
x. Beans with corn 10,182.54 100.9085
Xq Alfalfa’ 9,644.11 98.2044
xg Cotton 4,669.37 68.3327
Xq Lima beans 11,431.17 106.9166
X0 Corn 9,295.15 96.4113
X3y Yuca 13,018.25 114.0975

1The standard deviation is calculated according to the
formula (4.1.1) where price variance were taken from (32),
the yields from (12). However since the variance found there
from was too great, we assumed a Poisson distribution, as an
approximation according to which mean equal variance. Since
this is an illustrative problem in risk programming, this
assumption seems reasonable. With more data this assumption
could be relaxed to allow more flexibility.



Table 2. Capital1 and vaterz requirement by quarter and activity; for small
farms in Chincha Valley

oy W3 . By x4 o = I *g e %38 *n1
Bean
Squash Peas Sweet Tomato Hybrid with Alfalfa Cotton Lima Corn Yuca
Potato corn corn Beans
CAPITAL
1st guarter 3611 0 0 2141 0 0 0 €235 2640 0 1299
2nd quarter 3976 1163 1284 6707 0 860 1834 7138 3394 1212 1541
3rd guarter 790 3786 2585 0 2229 2718 2486 1395 3814 3642 184
4th quarter 2487 0 0 0 4904 0 3138 5133 4182 0 926
WATER
lst quarter 4 0 0 2 0 0 2 4 2 0 2
2nd quarter 2 2 2 1l 0 5 2 0 2 5 2
3rd guarter 5 5 2 0 5 25 2 3 2 4 2
4th quarter 4 0 0 0 2 4 2 5 2 0 2

lThe values are expressed in sales.

zrhe values are expressed in irrigations for small farm, 288 cubic meter per
irrigations.

89
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Resource restrictions. In this model we have capital,
land, labor and water as the most relevant restrictions. The
difference between Amorin's model and the one presented
here is that we considered the restriction guarterly. We have
taken the median value of Amorin's monthly data of input- |
output ccefficients and resource coefficients.

(a) Capital. The Banco de Fomentc Agropecuario del
Peru limits capital per month to 72 percent of the value of
the land divided by 12 months. Assuming the value of land to
be 50,000 sales per hectarea (1, pp. 20): then median of
capital available per gquarter will be:

50,000 x %ﬁd X 272 : 4,000 x Land

where Land is equal to the number of hectarea; more details
ahout capital availability in Peru can be found in (31). The
requirement of capital by quarter for each activity is presented
in Table 2,

(b) Water. The median gquarterly restriction of water is
shown in Table 2, The requirements of irrigations per crops
are presented in Table 4,

(¢) Labor. Amorin's model (1, pp. 24-25) did not consider
hired labor; instead an average of six members per family was
assumed. In our model a maximum of 480 hours of labor as a
median per quarter was considered. Regquirements of labor for

each crop are presented in Table 3.



Table 3. Laborl requirement by quarter and activity for small farms in Chincha

Valley
T T X4 X Xg | Xg s *m» *n
Squash Peas Sweet Tomato Hybrid 3::2 Alfalfa Cotton Lima Corn Yuca
q potato corn - beans
1st quarter 52 0 0 58 0 0 10 28 26 0 2
2nd quarter 2 5 6 77 0 0 12 82 57 86 2
3rd gquarter 0 78 6 0 70 52 12 35 57 0 42
4th guarter 42 0 0 0 38 104 52 31 42 0 34
1

The values are expressed in hours.

oL



Table 4. Resources available by quartorl

Capitalz Uatar3 Labor‘ fna
1st guarter 3,000 x L ] 480 L
2nd quarter 3,000 x L 10 430 L
3rd quarter 3,000 x L ) ¥ 480 L
&th Quarter 3,000 x L ; 480 L

1Capital and land are parameters in function of the numbsr of hectareas.

zthe values are expressed in soles.

3The valies are expressed in irrigations, 288 cubic meters per irrigation.

‘It asgumes 2 worker x 8 hours x 30 days.

112
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(d) Land. The level of productivity of the soil is the
actual average obtained in the Chincha Valley. Three different
size groups of a typical farm (e.g. 4 hectareas, 8 hectareas
and 16 hectareas) were used.

As it is seen the data have been primarily taken from
Amorin's work. There are some variations however in the linear
programming formulations, e.g. our problem limits the area in
the valley allocated to yuca to one-fourth of the available
land and not to one hectarea as in Amorin's programs.

For our linear programming formulations we have presented
in the next section the following characteristics, e.g., the
optimal solution, the second best and third best solution,
the area of the triangle given by those three points and
their respective di-tancon.l The second best, third best and 1
the area of the triangle provides an initial (non-probnbiliuticﬁ
measure of risk in the sense that they indicate the extent to
which net total income may fall, in the event net prices vary,
other restrictions being equal,

We can build a vector with the following components

v = (z, AB, AC, A)
where
z is the objective function value of the program, AB is the
euclidean distance between the optimal solution and the second
best solution, AC the euclidean distance between the optimal

solution and the third best solution, A is the area of the
lsee Appendix for the calculation of triangle and distances.
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triangle, with extreme points as optimal, second best and

third best solutions.
Define vectors v‘l), v‘z’,...,v(k) defined above for k

linear programming models

(1) (2) (k)

z 4 2

o (a2 [as )| () |AB
AC AC AC

A A A

then a partial ordering (introduced by the decision maker)

(k) makes subjective comparison between

defined over sets v
two problem comparable (this is comparable to the concept
of efficiency in the sense of Kocopmans for linear programming
problems with a vector objective functionm).
4,2, Static Cases to be Studied:
I, 1x, 111, IV, V

Here we point out the most important cases, we have studied
using linear programming techniques; it is static in the sense
that we have taken only one observation, of the Gy ‘ij' and bj
coefficients of the general linear programming problem.

Case I. Optimum farm plan assuming 4 hectareas of farm

and 12,000 soles of monthly average restriction of capital

and the restrictions of water and labor as indicated in

Table 4; no restriction on land to be allocated to yuca.

The most binding restriction is land in the 4th gquarter,

we have two activities, tomato and yuca. The value of
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the objective function is 51,331.367 soles. The results

in detail are indicated in Table 5.

Case II. Optimum farm plan assuming 4 hectareas of farm
and 12,000 soles of monthly average restriction of capital
and the restriction of water and labor as indicated in

Table 43 yuca has an upper brand of one hectarea.

The most binding restriction is also land in the 4th
quarter, we have four activities; tomato, lima beans,
corn, and yuca. The value of the objective function is

46,801,289 soles.

The results in detail are indicated in Table 6.

Case III. Optimum farm plan assuming 8 hectareas of
farm and 24,000 soles of monthly average restriction of
capital and the restriction of water and labor as indi-

cated in Table 4; yuca has an upper bound of 2 hectareas.

The most binding restriction is water in the second
quarter, we have four activities; sweet potato, tomato,
hybrid corn, and yuca. The value of the objective

function is 70,494.023 soles.

The results in detail are indicated in Table 7.



Table 5. Optimum farm plan as indicated in case I

Optimal solution (A) Second best solution Third best solution (C)
Ac:;;:ty d:::izltion level of (B) level of activity
P activity level of activity (hectareas)
(hectareas) (hectareas)
x‘ tomato 0.50001 1.12969 0.50001
Xg lima beans - - 1.75550
X,,  Yyuca 3.49997 2.87030 1.74448
Value of
the
program
(z) 51331.367 50397.695 48545.23
Area of the triangle ABC = ,95729864
Distance AB = ,89049447
Distance AC = 2.48264410

Distance BC 2.17847250

SL



Table 6. Optimum farm plan as indicated in case II

Optimal solution (A) Second best solution Third best solution
Azgézity d:ﬁ:izézion level of activity (b) Level of activity (C) Level of activity

(hectareas) (hectareas) (hectareas)
X, Tomato .24895 o -
Xq Lima beans 2.49999 2.49999 2.33332
%10 Corn 0.25105 0.50000 0.66667
X151 Yuca 1.00000 1.00000 1.0000
Value of the
program (z) 46801.289 46243.516 45887.500
Area of the triangle ABC = 0.035933215
Distance AB = 35206836
Distance AC = _51234245

Distance BC .23570681

SL



Table 7. Optimum farm plan as indicated in case III

Activity Activity Optimal solution(A) Second best solution Third best solution

code description lngécof ac%ivity (B) szel of ac%ivity (C) Leygl gf activlty

Xy Sweet potato 2.42493
X, Tomato 2.84986
Xg Hybrid corn 0.96997
%14 Yuca 1.15014

Value of the
program (z) 70494.023

Area of the triangle

Distance
Distance
Distance

2.00000
2.00000
0.80000

2.00000

67785.625

ABC = ,50991368
AB =]1,28606990
AC =1.60185150
BC = ,79999995

2.00000
2.00000

2.00000

62961.602

LL



Table 8. Optimum farm plan as indicated in case IV

Activity Activity Optimal solution(A) Second best solution(B)THird best solution

code description level of activity level of activity level(g} activity
Xq Sweet potato 3.0 3.0 1.25
X, Tomato 4.0 4.0 0.50000
Xg Hybrid corn 1.2 - g
%11 Yuca - - 3.5000
Value of the
program (z) 74159.258 66923.24 59990.352

Area of the triangle ABC = 3.14999580
Distance AB = 1.19999890
Distance AC 5.38539510
Distance BC 5.25000000

8L



Table 9. Optimum farm plan as indicated in case V

“Third best solution
Activity Activity Optimal solution(A) Second best solution(B) (C) level of activity

code description 10701 of act*vity 13‘?§ﬂgil;:::£}ty (hactareas)
Xy Sweet potato 2.42691 1.56249 -
X, Tomato 2.85381 1.12500 2.16666
Xg Hybrid corn 0.97076 0.62500 1.66666
Xq Alfalfa 0.14618 1.87500 0.83333
xll Yuca 1.00000 1.00000 1.00000

Value of the
program (z) 70013.359 58670.664 56098.477

Area of the triangle ABC = 2.835961
Distance AB = 2,6161737
Distance AC ~= 2,7052746
Distance BC = 2.3867455

6L



Table 10.

Simplex multipliers

Restrictions

Case 1

Case II Case III Case IV Case V

OO N U W N
aWN O

b b
awm

Capital 1lst guarter

Water

Labor

]

2nd
3rd
4th
1st
2nd
3rd
4th
1st
2nd
3rd
4th
1st
2nd
3rd
4th

quarter
guarter
quarter
quarter
quarter
quarter
quarter
quarter
quarter
quarter
quarter
quarter
quarter
quarter

11V 1S 0 LY

4.137¢

.4070

62.3200

quarter 1153.553 880.1018

«5487

1.0999

297.5049 463.8972 130.3496
190.5301 225.7562 155.1420

120

.6000 120

.6000 120.5999

B I O O O N

08
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Case IV, Optimum farm plan assuming 16 hectareas of farm
and 48,000 soles of monthly average restriction of
capital and 48,000 soles of monthly average restriction
of capital and the restriction of water and labor as
indicated in Table 4; yuca has an upper bound of 4

hectareas.

The most binding restriction is water in the second
guarter, we have three activities; sweet potato, tomato,
and hybrid corn. The value of the objective function is

74,159,258 soles,

The results in detail are indicated in Table 8.

Case V. Optimum farm plan assuming 8 hectareas and 24,000
soles of monthly average restriction of capital and the
restriction of water and labor as indicated in Table 4;

yuca has an upper bound of 1 hectarea.

The most binding restriction is water in the second
quarter, we have five activities; sweet potato, tomato,
hybrid corn, alfalfa, and yuca. The value of the objective
function is 70013.359 soles. We will use this case as

the basic starting solution for the next case.

In Table 10 we show the simplex multiplier associated at

the non-structural variables for the 16 restrictions for
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every case studied in this section.

4.3. A Chance-Constrained Programming, Case VI

Here we have a chance-constrained problem:

Max f (4.3.1)
subject to

Prob (c'x<f) = a (4.3.2)
szo

(i=1,2,...16 j=1,2,...11)

Case VI is an optimum farm plan assuming 8 hectareas with
an upper bound of 1 hectarea of yuca. The restriction indi-
cated by (4.3.3) are the same as in case V: The ¢ vector are
the net incomes given in Table 1 and the standard deviation
arealso given in Table 1.

As we have seen in section 2.3 we can arrive at the

following equivalent guadratic programming model.

Max £,, = C'x - gﬁ x'Vx (4.3.4)
subject to

Ax<b
x>0

where g = I l(a) = 2.33 for a=.01 if we assume that the

function I(a) is a normal distributed functionl, and R is

llt might approximated the Poisson distribution to a
normal distribution without too much error.
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evaluated by the following iteration procedure (21, pp. 192):
Step 1. Start by solving the linear programming problem,
i.e. make the gquadratic part equal to zero in (4.3.4),
obtain an initial value R, as R, and store it in R.

Ro = /xa v X, * R
Step 2. Using this R, solve the equivalent gquadratic
problem (4.3.4) if the new value of fll does not differ
too much from the previous one, stop the problem. We

have used the following stopping rule:

]Rn-l - Rnl

e €

n
where €=.003 in our case.

For solving the gquadratic programming problem we used
the ZORILLA program (42) using the IBM 360 model 50 of the
I.8.U. Computer Center, the average time was 1.84 minutes by
iteration. In Table 10 we show the iterations to solve it.

In Table 12 we indicate the Lagrange multiplier for the
3 iterations. The most binding restriction is the yuca upper
bound of 1 hectarea. The value of objective function is
69533.455 soles and we have six activities; sweéeét potato,

tomato, hybrid corn, alfalfa, lima beans, and yuca.



Table

1l. Katooka's iteration procedure

Value

Iter- |Rpe1"Rnl of Sweet Tomato Hybrid Alfalfa Lima Yuca

ation TR R=/RIVE ‘the  potato anea -
n o "o program X4 X, Xg X, Xg X11
L.P. - - 70013.359 2.42691 2.85381 .97076 .14618 & 1.0000
lst - 391.9881.69533.427 2.413556 2.8227112 .9654223 .0936442 .07924418 1.0000
2nd 0.005 389.8882 69533.427 2.413556 2.8227116 .9654223 .0936442 .07924418 1.0000
3rd 0.002 389.0313 69533.455 2.413569 2.8271392 .9654278 .0936934 .0791629 1.0000

ve
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Table 12. Lagrange multiplier associated with the Q.P.

Code Restriction i:.:::tion iteigiion iteiz?:ion
Cl3 Capital 2nd guarter .11455467 .1145546 «1145%5468
Clé Water lst quarter 109.01215 109.01215 109.01202
Cl7 water 2nd guarter 147.96713 147.96178 147.96715
Cl8 Water 3rd gquarter 119.91306 119.91366 119.91306
C2§f Yuca < 1 hectarea 363.83066 363.83066 363.83097
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5. SUMMARY AND CONCLUSION

l. A brief survey of the main theoretical results on risk
programming is presented in the first three chapters.

2. Por our empirical illustration we have used the data
of an optimal farm in Chincha Valley. These data were pre-
viously analyzed by Amorin (1, pp. 27-49) for his studies on
linear programming.

In an ordinary linear programming problem with a given
set of statistical data, it is not known generally how
reliable is the optimal basic solution. In our five cases of
linear programming we have only had one sample observation.

It could be possible to indicate a more general method of
reliability analysis for testing the sensitivity of the optimal
basic sclution and other basic solution, in terms of expecta-
tion and variance when more sample observations are available.

The first, second, and third best solutions are estimated
for our linear programming models assuming the vectors of net
income, resources and input-output matrix to be constant.

In every case studied the three alternatives are given
to the farmer, he could decide what level of activities would
satisfy his satisfying approach, in the event the optimal
(i.e. the first best) solution is considered more risky.

In every case the triangle area gives us a measure of
risk when we change from one extreme point to another. If we

could have more sample values of the elements cj (the price of
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the crops) it would be possible to see clearly our odds in
making an optimal production planning. In this sense the
second and third best solution specify suboptimal solutions.

We also give the simplex multipliers associated with
every optimal basic solution (first best). The simplex multi-
plier nl, nz, na,...,nlﬁ can be used to compute the relative
cost factor E& from the corresponding column of the original
system by the formula

Ej-cj-(n1a1j+n2a2j+. TETR S PLITIL

3. A chance-constrained version of the linear programming
model is then considered to see the sensitivity of the solu-
tions and an equivalent guadratic program is formulated. Al-
though the value of the program of the equivalent guadratic
problem and level of activities do not differ significantly
from the linear programming problem; we see that the linear
programming solutions satisfy the chance constraints to a
marked degree. However, if the tolerance measure (a) is varied,
or the sampling distributions of the net unit returns are dif-
ferent from Poisson, results different from the above are
quite expected.

4. A few concluding remarks may be added about the limita-
tions and possible generalizations of our empirical approach.
First, the variation of parameters (e.g. net prices) in our
model is not specifically estimated for lack of comparable and

homogeneous data. However, given more time and more data,
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these parameters could be statistically estimated with more
precision and then the effects of alternative distributions
like normal or chi-square, to on the optimal decision rule
could be compared and evaluated. Second, the second best,

and third best solution with the area of the triangle could be
used as a probabilistic measure for analyzing the sensitivity
of any linear programming problem, provided statistical distri-
bution of the parameter is known or estimated. Third, it can
be argued that different levels of tolerance measure (i.e.
different a) could be associated with the objective function
and with different restrictions to see the "implicit cost" of
flexibility in the sense of infeasibility. A scope for com-
paring safety first method with the chance constrained model
exists for any feasible linear program and this seems to be a

fruitful line of future research.
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8. APPENDIX

The area of a triangle with sides a,b,c is

A = /s(s-a) (8-b) (s-c)
where

s = %(a+b+c)

In our problems we have points defined by n coordinates so we
assume euclidean distances, for example if point A is defined

by (al,nz....,an) and point B is defined by (bl,bz,...,bn)

or
- 2
D= ¥ (a,~b,)
{=1 - St |

The following is a FORTRAN IV program to make possible the

calculation.



Table 13. Portran program to calculate the area of triangle

c PRPGRAM TP CALCULATE THE AREA #F A TRIANGLE, CIVEN THE N-CZ@RDI
c NATES @F THE EXTREME P@INTS A,B,C
DIMENSI@N A(50), B(50), C(50)
e READ A CARD WITH THE NUMBER #F CP@RDINATES
READ (1,2) NP@INT
2 FPRMAT (13)
c SET ALL THE PPINTS T¢ ZERS
1 bf 3 I=l, NPPINT
A(I) = 0.
B(I1) = 0.
3 C(I) = o,
Dl = 0,
D2 = 0.
D3 = 0,
c READ VALUES @F THE C@A@RDINATES A,B,C INDIFICATIZN IND A=l Be=2
c C= 3, IND = 4 ENDS THE SET @P VALULS
4 READ (1,5) IND, K, X
FPRMAT (12, 2X, I3, 2X, F12.6)
6 A(K) = X
o T8 4
7 B(K) = X
Gp T4 4

1



Table 13 (Continued)

8 C(K) = X

Gp TP 4

9 D¢ 10 I=1, NPPINT
D1=D1 + (A(I)-B(I))**2
D2=D2 + (A(I)~C(I))**2

10 D3=D3 + (B(I)-C(I))**2
DE1=SQRT(D1)
DE2=SQRT (D2)
DE3=SQRT (D3)
P = (DE1l + DE2 + DE3)/2.
AREA = SQRT(P*(P-DEl) *(P-DE2) * (P=-DE3))

C TITLE WRITIKG

WRITE(3,11) NP@INT

11 FPPRMAT ('l',30X,'PRPUGRAM T¢ CALCULATE THE AREA $P A TRIANGLE IN',2
1X,13,' CP@PRDINATES',////.'0',30X,'I',20X,'A(I)",16X,'B(I)",27X,"'C
2(x)* /1D
PP1l2 K=1, NPHINT

12 WRITE (3,13) K, A(K), B(K), C(K)

13 FPRMAT ('0',27X,13,13X,E14.8,7X,E14.8,15X,E14.8)
WRITE (3,14) DEl1, DE2, DE3, AREA

14 FgRMAT ('0',///.15X,'DIST A-B',2X,E15.8,10X,'DIST A-C',2X,E15.8,1

10x, 'DIST B-C', 2X, E15.8,///'0'.35X,'AREA ¢F TRIANGLE EQUAL T¢@
2, E15.8,//,"0" ,30X, 'etasdtsatisnss RARRARRARART)

26



Table 13 (Continued)

Cc

A BEW TRIANGLE THEN CHECK
READ (1,15) NP@INT
15 PPRMAT (I3)
IF (NPQINT) 16,16,1
16 sTgP 0007
END

Lé
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