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1. GENERAL INTRODUCTION 

The concept of risk has played a very si9nif icant role in 

the theory of production, resource allocation, and the theory 

of statistical decisions. It is not intended here to include 

in any comprehensive manner the various economic and statistical 

aspects of the concept of risk in economic theory. Only a 

limited objective of analyzing the implications of a certain 

type of probabilistic concept of risk in models of planning 

for optimal production in a linear proqramming framework has 

been attempted. The plan of the discussion covering this topic 

will be as follows1 

In Chapter l is presented a general introduction to 

economic models involving risk and uncertainty at different 

phases and restrictions, and constraints in the form of either 

equalities or inequalities. This is followed by Chapter 2, 

which presents a briet survey of some of the most important 

operational results available in the theory of linear pro-

gramming . These operational results have variations in 

aome or all of the parameters such as prices, input coeffi-

cients, and resources. The concept of risk implied by these 

variations is taken purely in the statistical sense in terms 

of probability measures. The distinction between prior and 

posterior statistical distribution is not made. Chapter 3 

examines the analytical methods of sensitivity analysis and 

the parametric approach applied to linear programming models 
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with variation in the parameters. The concept of risk implied 

in these variations is not statistical and the emphasis here 

is on deriving simple decision rules for guaranteeing a degree 

of safety. In Chapter 4 an empirical model ot probabilistic 

planning applied to the production situation of a farm in the 

Chincha Valley of Peru ia presented. The model used ia a 

variant of a simple linear programming model with eleven crops 

and four types of quarterly restrictions: (1) water avail-

ability, (~) land, (3) capital and (4) labor. The variations 

in the net incomes are the net prices in the objective function 

caused by the variability of yield and prices received by 

the farmers. The empirical example is considered only for 

illustrative purposes since it provides a very simple case 

of production planning under risky conditions. Hence, the 

lines of generalizing the empirical results, which have limita-

tions due to the data situation and special conditions of 

the particular qeoqraphic region of Peru, have been indicated 

in appropriate places in Chapter 4. 

Finally, a broad summary of all principal results is 

presented in Chapter S. 
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1.1. Risk in Economic Theory, 
Models with Equalities 

Many hypotheses about individual or corporate economic 

behavior, under uncertainty and risk, attempt to deal with the 

problem of behavior under the assumption that it is reason-

able for the behavioral unit to maximize gain or profit. 

The difference between uncertainty and risk must be point-

ed out here. Each term has had distinct meanings in different 

parts of economic literature. The term "risk" is character-

ized in a model in which the entire probability distribution 

of the outcomes has formally been taken into account, whether 

the character of that distribution is considered subjective or 

objective. The term "uncertainty• is applied to models in 

which the above stated conditions are not the case. 

It is very important to have a realistic theory explain-

ing how individuals choose among alternate courses of action 

when the consequences of their actions are not fully known to 

them. A survey of the literature of approaches to the theory 

of choices in risk-takinq situations has been given by Arrow 

( 3) • 

The probability theory represents the sustained efforts 

of mathematician• and philosophers to provide a rational basis 

on which expectations may be derived from past events. Roy 

(33) stated that there are major objections when one attempts 

to maximize expected gain or profit. The ordinary man has to 



www.manaraa.com

4 

consider the possibl outco e o( a given cours of action on 

one occaai on only, nd the v ra.qo or exp ctoc1 outcome, if 

thia conduct ero ropoated a larqo number of times under 

similar conditions, is irr lcvant. i\l o, the well- known 

pheno on of th divcrai!icati n of resources monq n wide 

ranqe ot project or invoat nt situAtions is not explained. 

Since the origin o! the sp cics, en h3Ve been akin9 

deci•iona, an~ other CWJn h ve b on t<llin9 the how t h y either 

~ak , or ahoulu ke, decision • von ; umann and ~orq n•tern 

(30) developed a theory of maximizinq the exoected utility. 

In order for their raeult• to be v~li , howov r, th ir asstmp-

tion that rational intlividuals a r e choosing th right utility 

function• muat hold truo. 

The funu ntol problc ot ~reduction is tle optlaum allo-

cation ot aoarca reoourccs tween alternative way o! achiev-

ing an objective. It can b<? ae n that the objectiv mcy be 

the 111axir:::tis&tion ot: th !i~' s profits or th . ini ization of 

coats. Cases exiot, however, in which besl~eo profit maxi ai-

sation or cos ini ization, the objective inclueee riok mini-

mization. It th docision-~nker i a willino to a•crifice 

profit in exchanqe for a curity, t he r~oult a nd9 on his be-

havior . 

The firrn is enlJaged in a type of ''qarc again t natur , • 

an opponent which i• really not a malevolont, naxi izina rival 

aatin9 purpos ly to thw rt the firm's de igns . Y t. one pos-

/ 
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sible approach to the firm's deciaion- makinq is to assume it 

act• •• if the intention for optimal aolutions were that for a 

game in which Nature did indeed have those attributes. 

A list of the best-known criteria may be found in the 

work of Van Moeseke (27). 

Expected profit is an appropriate maximum in recurrent ./ 

"small" decisions, but where disaster is possible one may pre-

fer reduced profit with le•• risk. In terms of the probability 

distribution of the relevant outcome variables, the question is 

whether to consider the mean only or also the variance or other 

measures of dispersion or skewness. 

Markovitz (26) has applied concepts of programming under 

uncertainty to selection of investment portfolios. Assume that 

one unit of money is to be subdivided into amounts x1 , ••• xn for 

tho purchase of corresponding amounts of n aaseta. Then 

t x.•l. Assume known the joint probability distribution 
i 1 

F(r1 , ••• ,rn) of return on aaaeta l, ••• ,n, with means, 

and covariance 

The problem is to choose what can be called an efficiency port-

folio in accordance with the a priori probability distribution 

P. 

The traditional rule used in economic theory has been to 
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discount the expected return µi for each asset by some formula 

that takes account of its degree of risk as measur ed by a11 , 

and maximize total discounted expected return . In fact, this 

rule is hardly ever used in practice ; the overwhelming practice 

is to diversify holdings, whereas the rule leads in general to 

the selection of one single preferred asset. 

Markowitz defines the efficiency of a portfolio 

(x1 , ••• xn) in terms of the relation to its expected return, 

ll • t µ 1x1 i 
and its variance of return, 

,..2 " ..., • t "ijxixj 

to the expected return µ and variance a 2 of alternative port-

folios of the same purchase price. 

The portfolio (x1 , ••• xn) is called efficient if there exists 

no such alternative portfolio with 

except possibly with both equality signs holding. 

In the classical techniques for applying calculus to cer-

tain types of optimization problems, it is possible to use the 

classical theory to solve analytically for an optimal solution 
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in terms of the various parameters appearing in the problem. 

The following example is given to illustrate the above-

mentioned possibility. 1 Consider a machine part which is pro-

duced on a particular lathe in a machine shop. The diameters 

of the parts turned out will not always be precisely the same, 

but will vary somewhat from one piece to another due to a var-

iety of causes. The diameter x of any particular piece can be 

considered to be a random variable. The mean µ of this random 

variable can be varied appropriately modifying the lathe setting. 

It is given a density function for x as f (x;µ). In order to 

pass inspection the diameter x must lie in the interval in 

which x1<x<x2 • If x<x1 , the piece must be scrapped. If 

x>x2 , the piece can be reworked. The shop under consideration 

does not rework pieces. Instead, it sells pieces with x>x2 
to another shop at a price p, each, for rework. Each piece 

which passes inspection is sold at price p>p1 • The cost of 

raw materials, labor, and machine time for each piece which 

enters production is k. It is desired to determine the value 

of µ which maximizes the expected weekly profit. 

If w pieces are machined per woek, tho expected number 

which must be scrapped is 

J
xl w 
0 

f (x;~) dx 

1 This example is taken from (19, pp. 50-60). 
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vhen tbe integral ia simply the probability that the diameter 

of any piece will be less thun x1 • Similarly, the expected 

number which vill be sold for rework is 

vJxm t.(x ; l!) dx 
x2 

wh re x ia the maximum diameter which any piece can have. 
m 

Thus the expectod weokly profit P is 

f ( xn.t ) dx) 

It is clear that the absolute maximum of P(µ) will not occur 

at the boundries vhere \J•O or ~ because these are not T11eaninq-

ful aolutions. Thus, the value of ~ when P takes on its 

maximum must be a solution to 

In the case where x is normally tJiotributod with moan µ and 

variance o2 , one bas tho unique aolution 

xl+x2 (72 
k 

p 
µ - 2 + <p- p ) x2-xl 1 

Since the solution 1• unique, this value of µ muet yield the 

abaolute maximum of the expected weekly prof it. 

A method for obtaining the relative maximum or minimum 
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values of a function F(x,y,z) subject to a constraint condi-

tion +<x,y,z)•O, consists of the formation of the auxiliary 

function, 

G(x,y,z) : F(x,y,z) + A+Cx,y,z) 

subject to the conditions 

~x • O· ;g • O· ~ • 0 OX 1 OY I az 
which are necessary conditions for a relative maximum or mini-

mum. The parameter A, which is independent of x,y,z, is oalled 

a Lagranqe multiplier. 

The method can be generalized. If one wishes to find 

the relative maximum or minimum values of a function F(x1 ,x2 , ••• , 

xn) subject to the constraint conditions ~ 1 cx1 , •.• xn)•O, 

+2 <x1 , ••• xn)•O, ••• +kcx1 , ••• xn)•O, we form the auxiliary 

function 

subject to the (necessary) conditions 

~O· ax ' l 

3G oG _ 
5x2 •O ; ······axn :0 

where ~ 1 ,~ 2 , ••• ,~k' which are independent of x1 ,x2 , ••• ,xn' 

are the Lagrange multipliers. 

Here attention will be placed on solutions of inequality 

systems. When a deciaion problem requires the minimization 

of a linear form subject to linear inequality constraints, it 

is called a linear program. By natural extension, its study 
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provides further insight into the problem of minimizing a con-

vex function whose variables must satisfy a system of convex 

inequality constraints. 

1.2. Models with Inequalities 

Mathematical programming (48) is concerned with the 

problem of maximizing or minimizing a function of variables 

that are restricted by a number of constraints. Interest in 

this problem arose in economics and management sciences, where 

it waa realized that many problems of optimum allocation of 

scarce resources could be formulated mathematically as pro-

qramming problems. The introduction of large high-speed elec-

tronic computers, moreover , made it possible in principle to ob-

tain numerical solutions, provided efficient mathematical meth-

ods and computational techniques could be developed. These 

methods cannot immediately be derived from classical toola, 

such as the method of Lagrange multipliers. The latter haa 

effectively been applied to extremun problems in which the 

variables were only restricted by equality constraints but it 

is hardly, if at all, possible to extend such a method to in-

equality-constrained extremun problems. However, mathematical 

programming problems nearly always consist of many variables 

and constraints. 

Mathematical programming has three aspects: 

1. The application or technological problem, i.e. the form-
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ulation of the model, the gathering of data, the inter-

pretation and study of the results, etc. 

2. The mathematical problem, i.e. the development of mathe-

matical techniques for a certain class of models. 

3 . The computational problem, i . e. the study of the computa-

tional aspects of a mathematical method and the development 

of computer codes for it. 

Mathematical programming pr.ob!ems can be divided into 

four classea: 

l. Deterministic, continuous models: the set of points, 

satisfying all constraints-to be called feasible region-is 

connectedr the objective function, i.e. tho function to 

be optimized is continuous. In this claas can be foundi 

a. Linear programming, the following reference may be 

consulted (11). 

b. Quadratic programming, i.e. the problem of minimizing 

a convex quadratic function, subject to linear con-

straints. 

c. The problem of minimizing a general convex function, 

subject to linear constraints. Most of the method 

which was developed for this problem can be con-

sidered as large-step gradient methods. 

d. Convex programming, i.e. the problem of minimizing a 

convex function (or maximizing a concave function) in 

a convex region. 
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2. Deterministic, discontinuous models; the feasible region 

is not connected or (and) the objective function is not 

continuous. In this class one finds: 

a. Integer linear progranuninq. The solution has to 

satisfy the additional requirement that it consists of 

integers. 

b. Mixed discrete continuous programming. Only part of 

the variables in tho optimum solution must be intagcr-

value. Many well- known cane studies can be formulated 

as a mixed programming problem, e.g. the travellinq-

salesman problem and the f ixod-charge problem. 

3. Stochastic models; the coefficients in the constraints 

or (and) in the objective function are random variables. 

In this class one has the chance-constrained proqramr.iing 

problems. A simple example is a linear programming problem 

with a stochastic requirements or objective vector. 

4. Dynamic models; the coefficients in the constraints or 

(and) in the objective function are dependent on a para-

meter (e . g. the time). For each value of this parameter, 

it is desired to solve tho problom. Dynamic models can 

often be solved by using Bellman's dynamic programming (7). 

In many cases the problem can also be formulated in a 

static way which may then give rise to a large programming 

problem. 

Broadly speaking, mathematical programming problems deal 
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with determining optimal allocation of limited resources to 

meet given objectives; more specifically, they deal with situ-

ations where a number of resources , such as men, materials, 

machines, and land, are available, and are to be combined to 

yield one or more products. There are, however, certain re-

atrictiona on all or some of the following broad categories, 

i.e.: on the total amount of each resource available, on the 

quantity of each product made, or on the quality of each pro-

duct. Even within these restrictions there will exist many 

feasible allocations. Out ot all permissible allocations of 

resources, it is desired to find the one or ones which 

maximize or minimize eome numerical quantity, such aa profit 

or coat. 
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2. PROGRAMMING MODELS UNDER RISK 

In ordinary and usual linear programming (L.P.) problems 

Max c'x 

subject to 

Ax<b 

x>O (2.0.l) 

It is assumed that all the parameters (i.e. the coefficients 

of the objective function), the inequalities, and the resource 

availabilities are exactly known without error. This assump-

tion ia relaxed when some or all elements of the set (c,A,b) 

are probabilistic, namely, the distribution approach of stoch-

aatic linear programming. Two •pecial approachea, the decision-

rule approach of chance-constrained programming, and the two-

atage approach of programming under uncertainty, are available. 

Moat linear programminq problems involve errors in either 

the input-output matrix, resource availabilities, or prices. 

Some of the more usual methods for reducing the effect of 

errors are: 

1. Replacing the random elements by their expected values. 

2. Replacing tho random elements by pessimistic esti-

mates of their values. 

3. Recasting the problem into a two-stage problem in 

whoae second stage one can compensate for inaccuracies 

in the first stage activities. 

Theae methods are called the expected value solution, the "fat" 
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solution, and the slack solution. (24) 

The so-called "fata formulation is characterized by the 

following reasoning. The decision-maker has to decide on some 

vector x of activities before he can observe the values of A 

and b. After he has made his choice, he is confronted with a 

particul ar A and b and can see whether or not x hae sati af ied 

the constraints. The difficulty, though, is that his prechosen 

x may not be feasible for the observed A and b. What the 0 fatn 

formulation prescribes is, that one restrict oneself to the 

convex set of those x which are feasible no matter what values 

of A and b will subsequently be obaerved. 

A more realistic statement of the problem i• what could be 

called the •slack• formulation. It involves converting the 

problem to a two-stage problem which can be described roughly 

as follows. The decision-maker is supposed to choose a non-

negative x, then observe a value of the random matrix A and 

the random vector b, and finally compare Ax with b. The vector 

x may or may not be feasible. But whether feasible or not, 

one is going to allow the decision-maker after the fact, to 

make another decision y to compensate for discrepancies between 

Ax and b, based on his original decision x and the later-

observed A and b, but at a penalty cost. 

The linear inventory problem is an example of this kind. 

Bere x is the amount of inventory which the storekeeper must 

have on hand, b is the later-to-be-observed random demand ,. A 
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is a nonrandom matrix of relevant technology coefficients and 

y is the second-stage decision, embodying two kinds of activ-

ities. If the demand exceeds the inventory, the storekeeper 

must 90 out on the open market and at a penalty cost, buy goods 

to take care of the excess of demand over supply. If the 

inventory exceeds the demand, he will have to scrap the excess. 

Thia loss is a penalty due to not having made a better choice 

of x. This is a more realistic way of looking at the problem 

than the •fat• solution because it keeps the decision-maker 

in business after he has made his choice of x and the random 

variables have been observed. A simple example is considered 

in Oantzig (11). 

2.1. Variation in Price Coefficients 

The importance of correct specification of errors can be 

illustrated with respect to an ordinary linear program. 

Suppose one has variation in price coefficients. Then the 

problem will become 

Max (e+y) 'x 

Subject 

Ax<b x>O 

Analytically, it is important to be able to give an economic 

interpretation to this type of error which may occur. Consider 

the error y associated with the price coefficient which may 

originate in the following ways: 
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1. Realized prioea may not correspond with plannin9 

prices. 

2. The coat of production may chanqe after the plan has 

been in operation. 

3. An individual price depends essentially upon the yield 

of the activity. 

In this case, if one supposes that there are no err ors in the 

resource supplies and input-output coefficient, and if the 

errors y are normally distributed with mean zero, then to 

maximize the expected value of objective function, we set y 

equal to their expected values, i.e. E(y)•O and apply the 

standard simplex procedure to the original linear programming 

problem. 

Freund (14) developed a model in which risk is taken into 

account in the selection of the optimum plan. Freund's model 

corresponds to the ordinary linear programming problem with 

the added generalization that it takes account of the varia-

bility of activities' net revenue due to sample variation in 

yield and price. He assumes that the risk aversion function 

takes the general form; 

y • 1-e-+z 

where y is utility 

z is the net revenue 

+ is the risk aversion constant. 

The larger the + is , the greater the risk aversion. Freund 
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then ahowe that thia problem can be treated aa a quadratic 

proqramminq problem, and, as such, a solution oan be obtained. 

2.2. Stochastic Linear Programming 

Stochastic linear proqramminq attempts to deal with tho 

situation in which the elements of one or more of the three 

sets of ooefficienta have a probability distribution •• oppoaed 

to just being conatants. The problem can be reformulated in 

the following manner. It ia de•irable to optimize (maximize 

or minimize) 

F • (c+y)'c 

subject to the restrictions 

(A+a) x ~ (b+t\) 

where aij'cj,bi a.re some constants ana aijk'aik'Yjk are random 

variables with probability distribution in which 

These ~\eane and variances may not necessarily be known. 

Let it be assumed (46) that it is known that the tech-

nol09ical coefficients lie within 9ive~ uppor and lover limits 

and that 

an ~ aij ~ •1j 
Dr < b. 

J 
< b+ 
- j 

c-:- ! Ci 
+ 

l. ~Ci 
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where those values written with a minus or plus sign as super-

script are known. It is then natural to ask what can be in-

fer red as to the range of possible variation of the optimum 

of the objective function. 

Vajda (46) has shown that 

Min Ici"i Min Icixi Min + 
tcixi 

< i < -
ta!jxi>bj iaijxi>bj + tai j x1>bj 

and 

Max toi'Xi Max tcixi Max Ictx1 i < i < -
ia1jxi<bj iaijxi<bj + ta11xi <bj 

Stochastic linear programming consists of solving the 

ordinary linear progr8m when it is given that the components 

of A,b, and/or c are no longer constants but rather variables 

with known and/or unknown probability distributions. 

There have been four basic types of approach to this 

problem: 

1. The probabilistic approach. 

a. Passive approach 

b. Active approach 

2. Parametric approach. 

3. Probabilistic-parametric approach. 

4. Diversification approach. 

The probabilistic approach is an empirical approach 
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pioneered by Babbar (5) and Tintner (44). They have tried to 

estimate the probability distribution of the objective function, 

its opti~al expectation, and the confidence interval about the 

expectation. Tintner (45) subdivides his approach into what 

he calls the "active" and the "passive" approaches. 

The passive approach (also termed the "wait and see" 

approach) derives, by numerical methods if necessary, the 

distribution of (max z•c'x) (and other z's corresponding to 

basic solutions other than the optimal basic solution) under 

the assumption of a known probability distribution function of 

all the random parameters, i.e. (A,b,c) of the problem. This 

approach assumes that all admissible situations, i.e. for 

all admissible variations of the random parameters, the condi-

tions of the simple nonstochastic linear program are fulfilled 

and the maximum achieved. The active or "here and now" 

approach to stochastic linear programming may be specified 

as follows: 

Maximize z • c'x 

under the conditions: 

Ax<BO 

where U ia a matrix with m rows and n columns with elements 

\!ij' auch that 

(m) µij >O n 
1: "µ1j•l 
j•l 

when x ia a diagonal matrix with elements of the vector x in 

the diagonal, and B is a diagonal matrix with the elements of 
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the vector b in the diagonal. The probability distribution of 

(max z) will depend upon the allocation matrix O•[~ij] 

which defines a set of controlled (i.e., nonrandom) variables 

which may be appropriately chosen to optimize a risk preferred 

function (i.e., a utility function associated with the objective 

function). Let za denote the value of the objective function 
~ 

under the active approach and let U and U represent two 

different sets of resource allocations that could be selected 

by the policy-maker (or the entrepreneur, for example, in a 

production situation). Since in every case all resouroes 

are to be fully allocated by condition (m) , the selection• of 

O and U represent only different relative allocations for every 

resource i•l, ••• ,m. The resulting probability distribution 

tor "max z8 " induced by these two allocations may then be com-

pared for purpose of deciding upon the optimal allocation. 

Senqupta (40) analyzes a method of characterizing the 

distribution of the objective function values corresponding to 

the set of extreme points in the solution space for both the 

active and the passive approaches. Truncation refers to the 

selection of extreme points that are neighbors, that is to say, 

to the optimal extreme point. The sensitivity of objective 

function values corresponding to truncated solutions is 

analyzed here in terms of stability properties, stability being 

measured in terms of variance. From an economic point of view, 

the approach outlined here otfere a theory of the second beat, 
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since it specifies the set of conditions under which a value 

of the objective function, that corresponds to the optimum 

solution, on the average may have higher instability than 

another value of the objective function, that correspond• to a 

truncated solution, under the assumed conditions of stochastic 

linear programming. 

The parametric approach (17) is a technique for dealing 

with stochastic variation in the coefficients of the objective 

function. Two sets of coefficients Ccjl and [c•j] are con-

sidered. A parameter t which can take on any finite values is 

introduced. The coefficients 

are used and the problem is dealt with by the usual simplex 

method. The values of the variables depend on the set of 

basic variable• but not on the value of t which appears only 

in the objective function. If the aolution space is considered, 

the choice of t mean• geometrically the choice of a preferred 

direction. Because there are constraints, there must be bounds 

on the feasible region. By varyinq t, it can be discovered 

where these bounds lie. This and other types of parametric 

approach are given in (29). 

The probabilistic-parametric approaeh (Madansky (22)) con-

siders a type of problem in which the constraints are not 

always met. Among all x and y whose probability of feasibility 

is at least P, it is desired to find the y which minimizes 
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c'x+f 'y and also to determine the value of x which minimizes 

E min (a'x+f'y) where E is the expectation operator. 

Here f 'y is the penalty paid for the deviation of the 

actual from the expected value c. 

Madansky (24) also considers the problem where one wishes 

to maximize 

Prob [min (c'x+f'y)<k] 
y 

for some fixed preassigned k. Considering the case where only 

c is random, the suggestion was to replace the vector c by the 

vector cy where Prob [c<'c J •y and to solve the determinantal - y 

problem for xy. Then one could look for the largest y 

and concomitant xy such that xy and y(xy) are feasible with 

p~obability P or more and such that F(cyxy)•k. Unfortunately, 

in multi-dimensions cy is not unique and althouqh xy is a 

continuous function of cy, it is not necessarily the case 

that by increasing y Prob [P(c x )<k] will increase . y y -
In the diversification approach, Markowitz (25) dealt 

with the stochastic problem in a completely original manner. 

He proposed minimizing the variance of these coefficients for 

their given expected values or alternatively maximizing their 

expected values for a given variance. 

In a standard stochastic problem, the coefficients are 

usually mean values of sample means and are not greatly 

different from the population means . It is Tchebycheff's 

inequality which states that 
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This fact must be taken into consideration when the confidence 

region of the objective function is calculated. 

Babbar (4) has qone into some theoretical detail in 

deriving the general case for the distribution of the objective 

function when all three sets of coefficients are stochastic. 

But he concluded that unless the element• have normal distribu-

tions, the problem of obtaining the distribution of the objec-

tive function and a confidence region about its expected value 

become unmanageable in most cases. 

Application to economic models of stochastic linear pro-

qramming will be found in Morrison (29). 

2.3. Chance-Constrained Programminq1 

A new conceptual and analytical vehicle for problems of 

temporal planning under uncertainty, involving determination 

of optimal (sequential) stochastic decision rulee is defined 

by Charnes and Cooper (8). 

The problem of stochastic (or better, chance-constrained) 

programming is defined as follows. Select oertain random 

variables with known distributions in such a manner as (a) to 

maximize a functional of both classes of random variables sub-

ject to (b) constraints on these variable• which must be main-

1This part is based on the papers by Charnes and Cooper 
(9), J. K. Sengupta (13, Chapter 9), Kataoka (21), J. K. 
Sengupta (37). 
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tainod at prescribed levels of probability. More loosely, the 

problem is to determine optimal stooha tic d olaion rule• under 

theae circumstanceu. An example iu supplied in (10). Temporal 

planning in whieh uncertainty olementa are present, but in 

which mana9cment h~n access to "control variables~ with which 

to influenco outccm a , 19 a general way of characterizing 

these problems. Thus, queuing problems in vhich the availability 

of servers, cuatomers, or both aro partly controllable fall 

within this classificfttion. It should be noted that the 

constraints to be rnaint in d at the specified levcla of prob-

ability will typically be qiv .n in the form of inequalities. 

Chance-constrained programming a~it• random data varia-

tion• and parmitu conotra.int violations up to specified 

probability limits. Different kinds of ~eoision rules and 

optimizin9 objectives ~ay be used so th t under certain 

condi~ions, a programming problem (not necessarily linear) can 

be achieved, that ia deterministic in that all random elements 

have bGeo eliminated. Existance of such •dotarminiatic equiva-

lent• in the form of epecitied convex proqratmdnq problems is 

ostablished for a general class of linear deci•ion rules (9) 

under the following threo olaeaee ot objective•: (l) maxi um 

expected value ('E modol•)1 (2) minimum varianca ('V model') 

and (3) maximum probability ('P model'). 

A chance-eonatrained torntulation would replace the 

ordinary linear programming problem with a problom ot the 
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following kind: 

Optimize f (c,x)•Max c'x 

Subject to Prob (Ax<b)~a, x>O (2.3.1) 

A,b,c are not necessarily constant but have, in general, 

some or all of their elemonts as random variables. The vector 

a contains a prescribed set of constants that are probability 

measures of the extent to which constraint violations are 

admitted. Thus, an element O~ai~l is associated with a con-
n 

atraint t a1jxj<bi to give 
j•l 

n 
Prob ( t a1jxj<bi)>a1 j•l 

(2.3.2) 

a double inequality which is interpreted to mean that the 1th 

constraint may be violated but at most e1•1-ai proportion of 

the tix:le. 

Here it is proposod to examine important classes of 

chance-constrained problems and to obtain deter10inistic equiva-

lenta that are then known in certain oases to be convex pro-

gramming problems. It is to be emphasized, however, that opti-

mization under risk immediately raises very important questions 

concerning a choice of rational objectives. Questions can 

arise, for example, concerning the reasonableness of an expected 

value optimization. Without attempting to resolve these 

issuos, it should be noted that the evaluators secured for one 

objective are not necessarily correct or optimal when applied 

to the same problem under an altered objective. 
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It ia assumed that a choice of values for decision vari-

able• x will not dia turb the densities associated with the 

random variables in A,b,c. Then we may formulate the general 

problem in terms of choosing a suitable decision rule 

x • .(A,b,c) (2.3.3) 

with the function ., to be chosen from a prescribed class of 

functions and applied in a manner that guarantees that x 

values, as generated, will satisfy the chance constraints of 

(2.3.l) and optimize f (c,x) in (2.J.l) with reference to the 

claas of rules from which the • of (2.3.2) is to be chosen. 

By a•aum.ing that the matrix A is constant (i.e. non-

random) I will also be restricted by the rule (2.3.3) to 

members of the claas 

x • Ob (2.3.4) 

where O 1 a n x n matrix whose elements are to be determined 

by reference to (2.3.1). 

We will examine all possible rules of form D and, for 

im~ortant claeses of objective and statistical distributions, 

in order to be able to characterize situations in which a 

deterministic equivalent will be achieved-irrespective of the 

D choice thus yielding a convox programming problem. 

The expected value model ('E model') is then 

maximize E c' x 

under condition• Prob (Ax<b)>a (2 . 3.5) 
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x-Db 

substituting (2.3.4) into the objective function of (2.3.S) 

one obtains 

E(o'Db) • (Ee)' O(Eb) 

it will assume that b and c are uncorrelated, then it will 

define the vectors 

then 

µ ' E (Ee) ' ; c 

Min - µ 0 'Dµb 

ii t - (Eb) I b 

Denoting the ith row of the matrix A by a1 • and (b-µb) 

by 6 and assuming normality of distribution for the variates 

(a1 •,o b - £1 >, parts of the constraints of (2.3.4) may be 

written as 

,.. ,.. 
•Prob (b1-a1

1 ob>-µb +a1 •0µb)>a1 i 
Assuming E(b1-a1

1 ob) 2>o, the above can be normalized and 

ith constraint can be written fully as 

(2.3.6) 

by the assumption of normali ty, the left-hand side of the argu-

ment, i.e. (b - a1 •o 61) I 1E <61 - a1 •o b) 2 is a standardized 

normal variable with zero mean and unit variance, ao that 

(2.3.6) is replaced by 
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2 -1J· -y 12 P1 (w) • (/2Yf) we dy 

(2.3.7) 

uaually for normal distribution ai>o.s is taken, then the 

equation (2.3.7) can be solved ae 

(2.3.8) 

where q1 >o for all 1, if a 1>0.5. 

The system (2.3.8) which involves nonrandom variables 

(i.e.), deterministic values only can be further reduced to a 

convex programming problem by introducing new variable v1 and 

writing ( 2.3.8) as 

rt + 1 0 < < {E(bA -a 1 0 bA) 2<0 
-~bi 8 1 µt>..:--vi--qi i 1 

or 

~bi-a1 •o µ~v1>q1 
1E(b1-a1 •o b) 2~o 

which can be further simplified by squaring both sidea, since 

nonneqativity is assigned to all expression• between inequality 

signs i.e., 

-a 'Dµ -v >-u i b i- bi 

-qi2 E(bi-ai'Db)2+vi2~0 
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with vi>O for each i. Hence, the equivalent convex program 

for chance-constrained programminq (2.3.5) is 

Minimize -µc' o µb 

under the conditions 

lJbi-ai'D µb-vi>O (2.3.9) 

-qi2 E(a1'Db-bi)2+qi2(µbi-ai'Dµb)2+vi2>0 

where the problem (2.3.9) is a convex programming problem in 

the variables D and v 

For the minimum variance ( 'V model') 

Min E(c'x-c1 'x1 )
2 

under the conditions (2.3.10) 

Prob (Ax<b)>Q 

x•Db 

where the objective is to minimize a generalized roean square 

error i.e. taking all relations between the cj into account, 

it is intended to minimize this measure of their deviations 

about some given pre!erred values z 0•c1 'x1 • 

It is easy to achieve the followinq deterministic 

equivalent to (2.3.10) 

Min E(c'Db-c 1 'x') 2 

under conditions 

lJbi-ai'DJJb-vi>O 

-qi2E(ai'Db-bi)2+qi2(µb -ai'Dµb)2+vi2>0 
i -
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v1~o 

This deterministic equivalent is again a convex programming 

problem. 

The maximum probability (•p model•) turns to a version of 

the satisficing approach. In this approach the c••x• com-

ponents are specified relative to some set of values - e.g. as 

generated from an aspiration level mechanism - which an organ-

isation (an individual or a business firm in the present con-

text) will regard as satisfactory whenever these levels are 

achieved. Of course, when confronting an environment subject 

to risk, the organization cannot be sure of achieving these 

levels when affecting its choice from what it believes are 

available alternatives. On the other hand, if it docs not 

achieve the indicated c 0 •x• levels or, more precisely, if it 

believes that it cannot achieve them at a satisfactory level 

of probability, then the organization will either (a) reorient 

its activities and 'search' for a more favorable environment 

or else (b) alter its aspirations and, possibly, the probabil-

ity of achieving them. 

The model is Max Prob (c'x>c'•x•) 

under the condition• 

Prob (Ax<b)~a 

x-Db 

(2.3.11) 

If the eame rules and assumptions are utilized as before 

to reduce this to a deterministic equivalent, it then becomes 
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(2.3.12) 

Thia problem can be solved uaing fractional programming 

methods ; for more detail• see (9). 

Sengupta (13) points out two aspects which may be noted 

about this method. The first aspect is that it characterize• 

the problem only within a very restricted class of decision 

rules, and the operational efficiency of the method muat be 

determined by further experimentation. In other words, one 

could specify other types of deterministic equivalents (6) 

which would subsume the cases considered here . Secondly, the 

decision rules here are not analytic, i.e., each time they have 

to be solved with the appearance of new data. An extension of 

this idea of deterministic equivalent in terms of recursive 

programming may be helpful, although it will involve nonlinear 

difference equations that are very difficult to solve. 

Shinji Kataoka (21) introduced a new objective function, 

which is suitable for stochastic pro9ramminq, utilizing Charnes' 
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and Cooper's model. That is 

Max f (2.3.13) 

Subject to Prob (c 'x~f) •CJ (2.3.14) 
and Prob (Ax<b) ~B (2.3.15) 

x>O 

It should be noted that the expected value of profit is 

not always considered a good measure for the optimality cri-

terion. Even though a policy x dominates other policies in 

the expectation. of profit, it may be more risky in that the 

chance of getting a very low profit may be greater than for 

other policies because of the dispersion of its distribution. 

For this reason, the lower allowable limit f defined by 

(2.3.14) a special form of (2.3.15) for a given probability 

a is maximized instead of the expected value profit. 

A case is considered in which the bi's and cj's are ran-

dom variables, but the a1j•a are constant. Transportation 

and production horizon problems belong to this category if 

customer demand and commodity price are random. This is 

called a transportation type problem. 

Kataoka has made the following assumptiono and formula-

tions. 

A.l. The random variable b1 has a normal distribution with 

mean value bi and variance ab2 
i 

The probability in (2.3.15) can be transformed as 
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then the left hand aide of the arqument is a normalised random 

variable "1th zero moan and unit varianco. Hence the proba-

or 

where 
• -y2/ 

G(x) • (12lf)-l Ix e 2 dy 

u•ually it ia considered t .hat a1>0.s1 then G-1 <s1>!0· 

A.2. The vaotor c ha. a multinorsaal diatribution wit.h mean 

value vector c•(c1,02,···•cn) and a dispersion ~•trix v. 

The variance of c•x i• x'Vx. Hence 

(o'x-cx < t-c'x) • I(f-c'x) Prob(c'x<f)•Prob 
lx'vx - rx·•vx lx'vi' 

where 

then for (2.3.14) ia 

f•e'x+I-1 (a)/x'vx 
Finally ~ataoka ha• a maximisation problem 
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(2.3.16) 

Kataoka also transforms a model to a more general stochastic 

programming problem in which the components of matrix A are 

random variables ; for more details see (21) . 

Sengupta (37) considers three generalized standpoints. 

First, the assumption of normality is replaced by a chi-square 

distribution, which has a nonnegative range and hence more 

applicability to economic problems of production planning; and 

a confidence interval for the optimal solution vector is worked 

out on this basis. Second, the relevance of chance-constrained 

programming to sensitivity analysis of optimizing economic 

models ia briefly indicated. Third, the applicability of 

chance-constrained decision rule• to problems of development 

planning through investment programming is discussed. 

Sengupta (37) assumes that the elements aij'bi, of A and 

b respectively are taken to be mutually independent obi-

square 
2 by Xij 

variates with means aij and bi 
2 (aij) and x (bi) respectively. 

and these are denoted 

He mentions two 

points about the reaaonableness of this aasumption . First, 

in most economic problems of production and resource alloca-

tion, the input coefficients aij represent coefficients of 

production function and t herefore these must be nonnegative. 
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Similarly, the resource vector must be nonnegative. Secon~ 

a chi-square, which is closely related to the normal (e.g., 

a normal variate truncated at y~O results i n a chi-square) 

has properties very similar to a normal distribution (e.g., 

reproductive properties) and hence approximations can easily 

be worked out by means of normal tables whenever needed. 

In the derivation of his model, Sengupta assumes for a 

moment that b is not random. By transformation (2.3.1) 

becomes 

2 n -
Prob <x 1 ( t a i j ) < 

j•l 

or, alternatively as, 

(2.3.17) 

(i•l, ••• n) 

where £1 Cw) is the cumulative distribution function of a 

central chi-square variate with degrees of freedom N•t aij' i.e. 
j 

Since the ordinary chi-square tables give the various siqnifi-

oance points for w for a given degree of freedom, it would be 

possible to compare the exact values of 
n _ n _ 

2 w- bi t a1 jxj/ t a 1 jxj 
j•l j•l 

satisfying the inequality (2.3.17). For example, if d1•.990 

(i.e. the tolerance measure) and I a1j•7.0, then from the chi-
j 
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square table one finds that 

implies a value of w0•18.4753. Therefore, if it is taken 

that w~w0 , this would satisfy a tolerance measure of 99\ or 

higher. Since, for any preassigned value of tolerance measure 

a 1 and the value of N•t aij' one can find a positive value of 
j 

w0 from the chi-square table. 

The chance-constrained programming model (2.3.1) then is 

finalized aa a convex programming problem of the following 

type. 
n 

Minimize -c'x• - I c x 
j•l j j 

under the condition• 

where 

For a qeneral case, Sengupta uses the F distribution when 

b is alao random and he obtains the following concave pro-

qramming problem. 

Maximize c'x• 
n 
t cjxj 

j•l 
under the restrictions 

n n 2 n 
bi( t a1 jxJ. )-k1 ( t aijx.) ( t a1 j) > O 

j•l j•l ) j•l -
x . > 0 )-
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where Ki ia obtained as follows. 

n _ 
2 

n 
r-( t aijxj) (I aij)/b1 ( t a1 jxj) 

j•l j j•l 

therefore 

then 

Sengupta (37) considers that at the macroeconomic level, 

chance-constrained interpretations are most appropriate for 

the restrictions of a linear pro9rammin9 model applied to 

development planning. At the microeconomic level, the chanoe-

constrained model is applicable most appropriately to situa-

tion• of portfolio investment allocation and the holding of 

assets when a margin of safety is desired. 

Further interesting results can be obtained asauminq 

another kind of distribution with nonnegative range such as 

the exponential, the gamma or the beta distribution. 

2.4. Safety First Principle 

In the economic world disasters may occur. For a great 

many people, the idea of a disaster exists and the principle 

of •safety first" asserts that it is reasonable and probable 

in practice that an individual will seek to reduce as far as 
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possible the chance of a catastrophe occurring . 

A single disaster is a discontinuity in one's pattern of 

behavior and in one's scale of preferences, viz. death, bank-

ruptcy or a prison sentence. 

A. o. Roy (33) has developed the safety first principle 

in terms of minimizing the upper bound of the chance of a dread 

event, where the information available about the joint proba-

bility distribution of future occurrences is confined to the 

first and the second order moments only. 

From a formal standpoint, the minimization of the chance 

of a disaster can be interpreted as maximizing expected utility 

if the utility function assumes only two values, e.g. one 

if disaster does not occur, and zero if it does. It would 

appear that this formal analogy is scarcely helpful, since in 

the one case an individual is tryinq to make the expected pro-

portion of occurrences of disaster as small as possible, while 

in maximizinq expected utility he is operating at a di~~erent 

level of satisfaction. 

A complete hypothesis about individual or corporate eco-

nomic behavior under uncertainty must specify three things . 

It must describe the way in which expectations are formed from 

experience of the hard facts of life , the objectives which the 

entity under examinntion is trying to achieve, and the oppor-

tunities present for attaining such ends. 

It may be possible that the outcome of economic activity, 
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which is regarded as disaster, is not independent of the ex-

pected value of the outcone. Thus, a person may be prepared 

to revise the level of disaster downwards if the expected return 

is at the same time raiSf!d. For example, he may at one and the 

same time regard a sepculative loss of 10 percent as a disaster 

if tha expected gain is only 5 percent, while, if the expected 

gain is 15 per cent, he will only get excited if his loss ex-

ceeds 25 per cent. Once again, such individual psychol09y can 

no doubt be interpreted in terms of utility function, but such 

development will not be pursued here. In the following discus-

sion, the disaster level of the outcome is taken to be constant. 

Let it be supposed, then, that the principle of safety 

first is adopted and that, when confronted with a range of 

possible actions, we are concerned that our gross return m 

should not be less than some quantity d. With every possible 

action, this outcome is not certain. There is coupled with m 

a quantity o (the standard error of m) which is, very roughly, 

the average amount by which the prediction rn is expected to be 

wrong. In the following, it is assumed that m and a are known 

precisely, whereas in fact they must be estimated from informa-

tion about the past. This raises all kinds of problems, which 

are beyond the scope of this discussion, since estimates of m 

and o, say £ and B, will themselves have sampling distributions. 

Thus a full analysis of the problem should discuss simultaneous-

ly not only behavior under uncertainty but also actions under 
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uncertain uncertainty. 

In the particular application of tho principle of safety 

first which is examined here, (33), it is postulated that m 

and a are the quantities that can be distilled out of our know-

ledge of the past. The slightest acquaintance with problems of 

analyzing economic tice series will suggest that this assump-

tion is optimistic rather than unnecessarily restrictive. 

Givan the values of m and a for all feasible choices of 

action, there will exist a functional relationship between 

these quantities, which will be denoted by P (a,m)•O. There 

may be a whole family of such relationships ; in this case F 

(a,m)•O is their envelope. Since it is not possible t o deter-

mine with this information the precise probability of the final 

return being d or less for a given pair of values of m and a, 

the only alternative open is a calculation of the upper bound of 

this probability. This can be done by an appeal to the 

Bienayme-Tchebycheff inequality. Thus, if the final return ia 

a random variable z then 

2 
Prob Clz-rn l~m-d) ~ a 2 (m- d ) 

If, then, in default of minimizing P (z<d), one operates 

on a 2/Cm-d) 2 , this is equivalent to maximiz ing (m-d)/a. 

Telser (43) postulates a particular attitude toward risk 

with stems from Roy's paper dealing with the theory of asset 

holding. He asks what assumptions make about about entre-
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preneurial behavior in the face of uncertainty and whether or 

not entrepreneurs maximize their expected income. Suppose an 

entrepreneur wishes to select a portfolio of assets so as to 

maximize expected net income. Then he would buy only one asset, 

namely, that whose price is expected to increase the most. If 

he is right, he would gain a great deal, but conversely, if he 

is wrong he would lose a great deal. It has been observed that 

people diversify their portfolios, hence reject the hypothesis 

that entrepreneurs maximize expected net income. 

However, entrepreneurs do prefer larger net incomes to 

smaller net incomes. Suppose an entrepreneur considers all his 

actions and strategies and for each action calculates the prob-

ability that the income resulting from the action, which is a 

random variable, falla •hart of a disaster level. For each ac-

tion a there is a probability distribution of net income I which 

can be written Prob (I<c1 a) where c is some constant. One 

computes the Prob (I~r ; a)•p, where o~~l, and r is the 

disaster level of income. Thia disaster level of income, r, 

could be associated with bankruptcy or with something less 

dramatic. 

Suppose that the entrepreneur does not want the probability 

of his net income falling short of r to exceed a. Hence he 

will not choose any action such that Prob (I~r1 a)•p>a. By 

this means, all his actions oan be put into one of two classes. 

The first class consists of all the actions a such that Prob 
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(I<r; a)>a and the second class consists of all the actions 

a such that the Prob (I~r; a)~a. All the actions in the 

second class shall be called admissible. 

Then the entrepreneur will choose that action a ot the 

admissible actions such that his expected income is at a maxi-

mum. Mathematically this means that the entrepreneur chooses 

the action a so that: 

Max t I 
a 

Subject to 

Prob (I!r; a)~CJ 

It would appear that such a rule of behavior requires 

that the entrepreneur knows the probability distribution of I 

for any action a that he might choose . 

Fortunately we may appeal to the Tchebycheff inequality 

which permits one to set an upper bound to the Prob (I~r; a) 

even when one does not know the probability distribution of I. 

The Tchebycheff inequality perm.its one to assert that: 
2 

Prob <II-Il>K) ~ 0
2 K 

where K>O, o2•variance of I and I•mean of I 

It is not hard to show that 

02 Prob (I~r) < _ 2 (I-r) 
2 

This means that when _ 0 
2 <a then Prob (I~r)<a 

(I-r) 
Accordingly, 
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< a 

becomes the risk restriction which is used. 

It is assumed that the entrepreneur knows a2 and I for 

each a, but that he knows nothing more about the probability 

diat~ibution of I for each a. 

This formulation of the safety - first principle differs 

from that of A. o. Roy. Be assumes that entrepreneurs minimize 

the probability of disaster. If they did, then their expected 

net income for that action which minimized the probability of 

disaster could be less than zero, i.e. they could be expected 

to lose money on their portfolio. This implies that there is 

no aaaet which the entrepreneur can hold without risk, that is, 

without the chance of gain or loss. 

Sengupta (39) attempts to generalize the decision rules 

under chance-constrained programming from the viewpoint of 

safety first principles based on Tchebychef f-type proabbilistic 

inequalities. The latter inequalities are utilized to define 

distribution free tolerance levels. The optimization criterion 

of chance-constrained programming based on the mean and vari-

ance is extended to a more generalized formulation based on the 

Kolmogorov-Smirnov'a statistic on the maximum discrepancy of 

the population and sampling distributions. 
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3. PARAMETRIC MODELS AND THE SENSITIVITY 

.ANALYSIS APPROACH 

We are treating two categories of problems relating to 

the same general question: What is the effect on the solution 

of a change in the given data of a problem? Thia question may 

arise after an optimal proqram has been found, but may equally 

arise at the beginning, if one wishes co explore the set of 

optimal proqrams by considering certain data as parametric 

variables. More specifically, we shall call problems of post-

optimization those in which definite modification of given 

data is made in the matrix of coefficients A, the requirements 

vector b or the cost or profit c. We shall call parametric 

problems those in which the data vary in a continuous manner; 

then the problem is to study the variation of the optimal pro-

gram as a function of the (variable) values of certain data. 

In its most general form, in which the data varies as an 

implicit function of several independent parameters of arbi-

trary degree, this problem has not been solved. The only case 

which is really well known is that where the parameters ocour 

in the first degree, especially where a single parameter occurs 

linearly in b or c. 

In the formulation and solution of linear-programming 

problems, one essentially aesumes at least initially, that all 

values of the coefficients are given and exact. Actually, 

such coefficients are derived from analysis of data and 
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usually represent average valuos or best-estimate values. 

Accordingly, it is most important to analyze the sensitivity 

of the solution to variations in these coef f ioients or in 

the estimates of theae coefficients. Stated still another 

way, one seeks to determine the range of variation ot the 

coeffioien~s over which the solution will remain optimal. 

Sensitivity studies of this sort are known as parametric 

linear programming. 

Without a knowledge of the probability distributions of 

the coefficients, queations regarding sensitivity of aolutions 

can presently be answered only in a limited sense. As noted 

by Gass (15, p. 123) not much has been accomplished to date with 

respect to sensitivity analysis for variations in the coeffi-

cients in the matrix of a1 j and detailed study of the ef fecta 

of variations of either the objective function cost coeffi-

cients or the constant on the right-hand side has been limited 

to special cases. Needless to say, much research re-

mains to be done in the area of parametric programming. 

3.1. Parametric Programming and 
Sensitivity Analysis 

Methods of sensitivity analyaiu which concentrate on the 

optimum set of basic activities (i.e., optimum solution vec-

tors x0 and y0
) may be appropriately called parametric pro-

gramming, since they essentially consider the set of restric-

tions to be placed on the variation of the parameters, (A,b,c,) 
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such that the optimum activity-mix x0 say still retains its 

optimum character. 

A major task in the development of realistic linear 

programming models is the gathering of accurate and reliable 

numerical values for the coefficients. Hence, it is impor-

tant to study the behavior of solutions to linear programming 

problems when the coefficients of that problem are ailowed to 

vary. This type of investigation is the function of parametric 

linear programming. 

Once some linear programming problem of practical interest 

has been solved, we may discover that one or more of the 

prices were incorrect, one or more of the bi were wrong, and 

perhaps a decimal point waa misplaced in some a 1j. It may 

even turn out that some variable of interest or some constraint 

was omitted from this problem. 

It is the purpose to show how to koep to a minimwn the 

additional computational effort required to take care of 

above problems. In many cases, it ie not necessary to solve 

the problems over again . A relatively small amount of work 

applied to the optimal solution will suffice. In other cases, 

however, there is no alternative but to go back to the begin-

ninq and resolve the problem. 

There are aeven specific problems. These can be briefly 
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stated as follows. 1 

1. How much can the prioe vector c b changed in some 

specified way betore the optimal solution obtained 

will no longer be optim.al? 

2. For a given change in o, how do we proceed to a new 

optimal solution if the original solution is no 

longer optimal? 

3. How much can the requirements vector b be changed 

in some special way before the optimal solution 

will no longer be foasiblo? 

4. If a given change in b makes the optimal solution 

no lonqer feasible, how do we proceed to a new 

optimal solution? 

s . How can the addition of another variable (vector) 

be accounted for? 

6. How can the insertion of an additional constraint 

be incorporated into the system? 

7. Changes in tho matrix elements a1 j. 

The technique of how to handle these problems is given in 

(2 ,15 ,18). 

Consider the problem of allocating labor to different 

jobs. The labor available is a variable function ot time. In 

Saaty (34), a schedule of allocating labor (in the shipping 

1Most of this section has been taken from G. Hadley (18, 
Chapter 11). 
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operation) whose available amount is a function of time, to 

different tasks, in order to minimize the total cost, is qiven. 

The problem is cast in linear programming form in which all 

the coefficients are parameterized. The dependence of the 

optimal value on the parameterized coefficients lead& to a 

sensitivity study. 

Perhaps the most important operational approach of 

sensitivity analysis arises when we consider the sensitivity 

of the extreme value of the objective function in t he neighbor-

hood of the optimum by obtaining a series expansion for the 

objective function (38). Denote the primal and dual problems 

in standard matrix notation as 

Primal: Max F • c'x 

subject to 

Ax < b x > 0 

Dual: Min W -y'b 

subject to 

A'y > c y~o 

where x and y are column vectors of n coruponents, A is a 

matrix of m rows and n columns and prime over a variable de-

notes transposition. Now assuming the above to be a regular 

linear programming problem (i.e., abstracting from degeneracy 

d 0 0 an other peculiarities), let x and y be the optimal solu-

tion vectors respectively with the associated set A0 ,c0 ,b0 • 
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Denoting by v the common value F0 • w0 and then following 

Saaty's (35) procedure one could derive easily the following 

partial derivativesa 

• XO (i) 

{ii) 

~v 0 0 (iii) 
3aij --xj Yi 

where A - (aij) 

provided, of course, such expansions around the optimal point 

(x0 ,y0 ) are valid, i.e., the vector o has to be in the interior 

of the cone associated with the solution vertex. These sens!-

tivity indices have been further generalized by considering 

the optimal value v • F0 • w0 as a function of a vector 

of pa.rametera, say time t in its different phases. Averaging 

of such indices over a series of steady-state time periods 

qivea a method of evaluating changes in the neighborhood of 

the optimal objective function. As Webb has remarked on the 

operational implications of these sensitivity indicators: 

These practical results are of value in determining 
the required accuracy of basic data systems, evaluating 
the significance of management changes in parameters, 
determining moat significant parameters and the 
detecting of trend in the operation. 

Sengupta (38) said that two things must, however, be pointed 

out about such a type of sensitivity indicator, especially 
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the relation (iii) appropriately sealed. First it may offer 

a great help by way of developinq working rules for screening 

a aet of observed data on the coefficients aij' just like the 

statistical rules for rejection of outliers in practical work 

of statistical estimation. Secondly, these indicators dependent 

as they are on the duality theorem of linear-proqramminq are 

not necessarily such that they can be applied to any basic 

feasible solution (or the objective function corresponding to 

it) other than the optimal basic feasible solution. In other 

words, this type of sensitivity analysis is strictly appli-

cable to the optimal objective function and the associated 

optimal solution vectors x0 , y 0 • Hence, when it is possible 

to wait and see the range of obmerved variation in the input-

coetficients and then pick the optimal pair (x0 ,y0
) for a 

specific a1 j or a collection of them, the above type of sen-

sitivity analysis, partial as they are, may be of great help. 

3.2. Range Analyais 

Let us point out Le Chatelier's (36) principle which has 

the following statement: 

If the external condition of a thermodynamic system 
ia altered, the equilibrium of the system will tend 
to move in such a direction as to oppose the change 
in external conditions • 

.An extension of Le Chatelier'a principle is as follows: in 

linear programming problems, for any small change in the cost 

coefficients c 1 the change in x1 will be smaller every time a 
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new constraint is added to the system. 

As noted by Gass (15) the investigation of parametric 

programming as applied to the variation of the coefficients 

ot the objective function originated in the study of a dynamic 

(multiperiod) product inventory problem in which a manufacturer 

of a seasonal item must determine optimum monthly production 

schedules, so that customer demand can always be satisfied by 

a combination of current production and overproduction (i.e., 

inventory) from previous months. Here, one seeks to minimize 

the swa of co•ta due to output fluctuations (e.g., overtime, 

hiring and layoff, eto.) and to inventories. 

One parameter linear programming program as considered 

by Gass and Saaty (17) may be stated mathematically as: 

Let o~l<t where 6 is any arbitrary, algebraically small, 

but finite number and + is any arbitrary, algebraically large, 

but finite number. For each l in this interval, find a vector 

Min (3.3.l) 

(ial, ..• m) 

(j•l, ••• n) (3.3.2) 

where c'j,cj,aij and bi are constants. 

Let's asaume that this problem ia non-degenerate and that 

a basic feasible solution of equation (3.3.2) is already avail-



www.manaraa.com

/ 

53 

able. Then solving their problem by the simplex technique we 

have two cases: 

l. A solution exists for A•6. The optimality-criterion 

function zj-cj can be represented as a linear 

function of A, namely 

zj-cj • aj+ABj 
Hence, for an optimum solution for A•6, one must 

have 

aj+6Bj<O (j•l,2, ••• n) 

Defining 

and 

or +-, if all aj~o 

The minimum aolution will than be obtained for 

all such that 

/ If f • +- then the solution is optimum over all admissible 

values of A, 6<A<+. If, however, r is finite, then, in 

particular A•-~k/ak for some particular Bk>O. If all the 

corresponding x1k~o, then no minimum (optimum) solution will 

exist for A>r. If, however, at least one xik>O then one can 

introduce a new vector Pk into the basis (by the simplex method 

technique). Thia new basis will result in a new range of opti-
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mality on 'X, nai:ely: 

T•A' <A<T' 

Tbus, b~ succaaaive iterations, one can proceed from one ranqe 

of values of ). to the next, 4nd completely cover all admiaaible 

value of l., 6~). <+ . 

As notod by Gaas (17), tho varioua ~and A that ariae 

are called charaotoristio values of )., while the corresponding 

optimum solutions are called characteriotic solution•. 

2. uo finite optimum aolution exiets for l•~. In a ttempt-

inq to determine an optimal (minimal) solution where l•6 , 

one has n column k, such that ~k+68k>O. However, one cannot 

introduce a now vector into the baaio becnuse all x1j~o. 

a. If Bk>O, then no finite ~inimum solutions exist 

tor any 

b. If Sk!O, then 4k+l.8k>O will hold for all 

(Jk 
).<).. - - -l ~k 

Hence; no .finito rnini :11um aolution will exist for cS~>.~l.i· 

It all aj+liBj~O, then an optimum solution will exist 

for li, and ~l can bo cl~tu;cmined by A119!:lin(-<1j/ Bj ). 

aj >O 

The characteristic solution hol ds for Ai~l!>. 1 , and one can 

then proceed as in tho first caae. 

It all aj+~iBj>O tor at least ono value of j, than a new 
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basis can be obtained, and one can continue, finally obtaining 

a solution as in the first case, or the knowledge that there 

are not values of l for which a finite minimU11l solution exists. 

summarizinq (17) we have seen that: 

1. By a modification of the qeneral simplex proc~dure, 

it is possible to investigate systematically and 

solve the one parameter objective-function problem. 

2. Given any finite minimum solution, we can determine 

a set of characteristic solution• and the associated 

characteristic values tor all possible values of the 

parameter. 

3. A solution is minimum over a closed interval of ~. 

4. The set of ~ for which minimum solutions exist ia 

cloaed and connected. 

The generalization of one-parameter linear programming 

problem to the case of the parameterization of the objective 

function with n parameters has been outlined by Gasa and Saaty 

(16). 

For the case of n•2, one •eeks to minimize 

and, generalizing on the method for one-parameter problem, one 

must determine the convex region in (A1 ,A2)-plane whose 

points satisfy 

(j•l,2, ••• n) 
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Gass and Saaty consider two methods for ao doing, namely, 

the double deacriptive method (28) and the two-dimensional 

graph of inequalities, and illustrate their parametric pro-

gramming procedure by the latter process. 

The parametric-proqramminq problem involving the riqht-

hand-side coefficients can be stated mathematically (15) as 

followas 

Let a~8<8. For each 9 in this interval, find a 

vector x • (x1 ,x2 ••• xn) auch that 

n 
min I cjxj 

j•l 

subject to 

x.>O )-

(i•l, 2 I• e .111.) 

( j•l, 2, ••• n) 

Thia problem, however, can be considered in its dual formula-

tion in which case one obtains a parametric objective function 

problem of the form considered before, which can then be solved 

by the procedure described therein. 

In the general case Saaty (34) considers a more general 

parametric-programming problem in which all coefficients aij' 

cj' and bi are function of time. This problem can be cast in 

linear programming form in which the coefficients are functions 

of time. In fact, many linear progrmnminq problems occurring 

in application may be cast in this parametric form. For 
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example, in the potroloum industry it has been found us ful to 

parameterize the outputs lUJ functions of time . In Leontioff 

~odcls, this d9a>endence of the coefficient• on till\O iG an 

essential part of the problom. Of special interest is t.be 

general ca:se when inputs, the outputs, and tho coats all vary 

with ti.mo. When the variation of the coefficients with tim 

is known, it is then dosirod to obtain thG solution a~ a func-

tion of ti , avoidin9 repetitions for sp~cific vnlues. 

This prococlurc requires uolving sets ot simultaneous 

general (not necessarily linear) in qualities in t, r esulting 

from tho conditions ~j-cj~O and aa S aty ouserves i• generally 

cu!!Jborsomo except for problcrno involvin9 the paraJ:ietcrization 

of the coefficienta ot only a few ot the basis vector. 

J\nothor approach uainq the oe<ld le point properties is 

the primal-dual motho~. 

Pricnalz nax c'x Duals Min y'b 

Ax<b A'Y!C 

x>O y?_O 

If we detine ~·(A+6A, b+ab, c+6c) by definition of a saddle 

point to 

(~c'-y'oA) ~x-~y (6b-&Ax)!..O 

where the first part ia terr.ied the corrected change in probabil-

ity and the aooond torm adjusted capacity. 
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3.3. Other Measures 

In an ordinary linear programming problem with a given 

set of statistical data, it is not known generally how reliable 

is an optimal basic s olution and for that matter, any other 

basic feasible solution. One of the consequences of an ordinary 

small variations of the elements of the coefficient matrix, 

the elements of the resource vector or those of the vector of 

net prices in the objective function. Some methods of para-

metric programming have been developed and applied in situations 

where the parameters of the problem are known to change in a 

certain way. 

An alternative fonn of sensitivity analysis is specified 

by considering solutions other than the optimal one and thereby 

initiating an approach to the theory of the second best. 

Thia type of measurement divides the set of all feasible 

solutions into two subsets, the first conta ning all solutions 

except the baaic feasible ones, the second containing only the 

basic feasible ones (i.e., the set of vertices of the convex 

polyhedron). For an ordinary and well-behaved linear program-

minq problem, e.g., the primal maximization problem 

Max z•c'x 

subject to 

Ax<b 
x>O (3.3.l) 

if the solution exists, then the second subset could be sub-
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divided further into disjoint subsets, the first containing the 

maximum value and the objective function and the corresponding 

optimal solution and the second containing the rest. With a 

9iven objective function, it is possible to order the basic 

feasible solutions belon9ing to the latter subset in an in-

creasing order according to objective function values. This 

permits us a working rule to define second best (or more 

precisely 'truncated') values of the objective function. For 

a detailed mathematical treatment of several theorems connected 

with truncated solutions of a stochastic linear programming 

problem the following reference (40) may be con•ulted. 

Now let us denote the variations of the parameters (A,b,o) 

by an index set q or (A,b,c)q where qml,2, ••• ,Q runs over only 

admissible values. An admissible value is any value of the 

set (A,b,c)q which satisfies the conditions of an ordinary 

linear programming problem in tho sense that the above described 

subsets containing the best, the second best, etc. values of 

the objective function are non-empty. For any fixed value of 

q and, hence, the set (A,b,c)q of a linear programming 

problem mentioned in (3.3.l), let the index k•l,2, ••• ,K q 
denote the set of basic feasible solutions. It ia denoted 

by Pq(k) (z) the value of the objective function for a fixed q 

and a particular k. Now define 
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F (i) • Max (F (k) (z) I k•l,2, ••• ,Kq1 q k q 

F (j) • Max [F (k) (z) I k•l,2, ••• ,~q and K+iJ (3.3.2) 
q k q 

F (p) 
- Max 

(P (k) (z) k•l,2, ••• ,Kq and &+i, K+jJ q k q 

It is assumed without loss of generality that our basic 

feasible solutions are so defined that Pq(k), Fq(j) and Pq(p) 

are strictly positive tor all admiaaible q and that by con-

struction 
p (i) > F (j) > F (p) > 0 

q q q (3.3.3) 

since the weak inequalities 

F (i) > F (j) > F (p) > 0 
q - q - q -

can be easily reduced to strict inequalities by defininq that 

each of the indices i, j and p may contain more than one point 

(i.e., more than one selection) , provided they give rise to the 

same value of the objective function. For example, if there 

are three points (i.e., three basic feasible solutions) in the 

sequence k .. 1,2, ••• ,Kq for a fixed sample q, whicl. give 

rise to the identical maximum value P (i) , then the auper-q 
script i contains these three points, so that in the definition 

of truncated maxima F (j), the condition k+i has to be inter-q 

preted accordingly with suitable modifications. From now on 

it will be designated F (i) the regular maximum, i.e., trun-q 
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cated maximum of zero order (or, the best solution), Fq(j) as 

the truncated maximum of the first order (or, the second best 

solution) and P (p) as the truncated maximum of second order q 
(or, the third best solution) and assume that the parameter 

var iation are such that these three maximum values are qenerated 

for each admissible k, satisfying the conditions of an ordi-

nary linear proqramming problem. 

We note that there is an infinity of solutions between 

Fq(i) and Fq (j), i.e., the convex combination as moves from one 

to zero. However, we restrict ourselves only to the vertex 

points (i.e., basic feasible solution) for the derivation of a 

decision rule because the set of basic feasible solutions is 

finite and countable on the one hand and the activity vectors 

enterinq into the basic feasible solution are linearly inde-

pendent, implying that the instrument variable• included in 

the set of activity vectors arc linearly independent. 

Now we can consider the throe truncated maxima Fq(i), 

F (j) and F (p) of order zero, one and two, reapectively, as q q 
defined in (e.e.2) and the following two lemmas which charac-

terize tho truncated maxima (41). 

Lemma 1. Let Ax<b denote a set of constraints, which to-

gather with the nonnegativity requirement x~O define a closed 

and bounded convex set in the real domain. Then there exists 

another closed and bounded convex set, which is a proper subset 

of the convex aet defined by Ax~b, x>O and which has aa 
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its extreme points those of Ax<b except for one which is 

eliminated. In other words, any extreme point in Ax<b, x~O 

can be eliminated and all convex combinations of those remaininq 

will define another bounded and closed region in the real 

domain. 

Lemma 2. No two distinct sets of (m-1) of m bounding 
0 0 hyperplanes which intersect at (x 1 ••• ,x m> can both pass 

through a second extreme point. 

And let us define over all admissible q•l, ••• ,Q the 

expected va1ues of Fq(s} by E (Fq(s)) and the variance of Fq(s) 

by Var (Fq(s)) where s•i,j or p. Prom the relation (3.3.3} 

it readily follows that 

E(F (i» > B(F (j» > E(F (p» q q q 

if we find 

Var (F (c)) 
q 

the optimal value 

it turns out that 

<Var (F (j)) <Var (F (p)) q q 

P (i) i• said to be stable. q 

Var (P (j)) <Var (F (i)) q q 

If r however, 

and this difference in variance far outweiqhts the difference 

in expected values it might be more reasonable to accept the 

second best solution F (j) which is more stable in terms of q 
variance than the best one F (i) , q • 

Sengupta (38) added two comments. First, the results 

in the theory of second best are applicable only for "wait-
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and-see " or passive situation. An active approach could be 

introduced, however, as is done in stochastic linear program-

ming by introducing additional decision variables controlled 

by the decision-maker. Secondly, the above type of sensitivity 

indices, especially if modified to include the active approach, 

is very closely related to operational measures of senaitivity 

developed in physical sciences. As an example of the latter 

one may mention that the sonsitivity of a circuit is usually 

expressed as the ratio of the difference between the maximum 

and minimum values of the output quantity to its mean value, 

i.e., 

Sensitivity of a circuit • µ max - µ min mean 

where µ • value of output quality. 

The operation• researcher (20) is often faced with devising 

models for operational systems. The systems usually contain 

both probabilistic and decision-makinq features, ao that we 

should expect the resultant model to be quite complex and 

analytically intractable. This has indeed been the case for 

the majority of models that have been proposed . The exposi-

tion of dynamic programmi~~ by Richard Bellman (7) gave hope 

to those engaged in the analysis of compl~x systems, but this 

hope was diminished by the realization that more problems 

could be formulated by this technique than could be solved. 

Schemes that seemed quite reasonable often ran into computa-

tional difficulties that were not easily circumvented. 
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Hovard (20) in his work provides an analytic structure 

for a decision making system that is at the same time both 

general enough and yet computationally feaaible. It is based 

on the Markov process as a system Qodel, and it uses an 

iterative technique aimilar to dynamic proqrammin9 aa its 

optimization mothod. 

For a system operating under a fixed policy, a knowledge 

ot the total expected reward of the process constitutes a 

complete understanding of the system. The most interesting 

oases arise when there are alternatives available for the 

operation of the system. In qeneral, the problem is to find 

which set of alternatives of policy will yield the maximum 

total expected reward. 
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4. APPLICATION OF A MODEL OF 

Pnc>BABILISTIC PROCRAMMING 

Here we will try to show some application of the methods 

so fa.r surveyed to the optimum organization of agricultural 

production in the Chinoha Valley, Peru for illustrative purposes 

only. The applications are baaed on the data of a linear pro-

gramming problem considered by Amorin in hi• thesis (1), where 

he pointed out that in the Chincha Valley uncertainty exists 

about the optimum combination of crops produced on any farm. 

Thia is reflected by the variety of different crops produced 

by the farmers of the area and also in the variations of yields 

rates and net return from the use of resources, especially 

capital and water. 

His objectives of his study were aa followsz 

(a) to define the optimum combination of crops which 

maximizes the net income of small farms (i.e., a 

representative farm), considering the limitations of 

capital, land, labor and water in the Chincha Valley. 

(b) to analyze capital restrictions at selected levels, 

since capital is one of the most critical limitations 

in Peru. 

(c) to define the amount of land best suited for the 

resources of water, capital, and labor available on 

the farm. 

The conclusions of his study were: (1) that the small 
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farms of the Chinoha Valley have an excess of family labor 

and (2) the main resource restrictions are water and capital. 

He used linear programming techniques to solve his problem. 

4.1. Definition of the Problem 

We will use almost the same model as that of ~orin, 

which is designed to specify the plan which will qive maximum 

income, considering the limitations of capital, water, land 

and labor; however the variations of incomes due to variation 

of prices of the products in the market are allowed in our 

case. Now for any given crop we have the relation 

Var (Income) • Var (prioe x yield) 

• (yield) 2 x Var (price) 

if the price element only is random. 

(4.1.l) 

In the Chincha Valley eleven different crops were defined. 

These were crops that have been usually produced there with 

acceptable yields. 

An estimate of net income and its standard deviation 

per hectarea by activities (crops) found in the area ia 

shown in Table 1. 
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Table 1. Annual net income by crop and its standard deviation1 

Crop Income Standard deviation of income 

xl Squash 9,023.00 94.9894 
x 2 Peas 7,617.13 87.2761 
X3 Sweet potato 6,927.99 83.2345 
X4 Tomato 11,535.Sl 107.4034 

X5 Hybrid corn 6,030.39 77.6555 
x6 Beans with corn 10,182.54 100.9085 

X7 Alfalfa 9,644.11 98.2044 
X9 Cotton 4,669.37 68.3327 
Xg Lim& beans 11,431.17 106.9166 
xlO Corn 9,295.15 96.4113 

xll Yue a 13,018.25 114.0975 

1The standard deviation is calculated according to the 
formu1a (4.1.l) where price variance were taken from (32), 
the yields from (12). However since the variance found there 
from waa too great, we assumed a Poisson distribution, as an 
approximation according to which mean equal variance. Since 
this is an illustrative problem in risk programming, this 
aaawnption seems reasonable. With more data this aasumption 
could be relaxed to allow more flexibility. 
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Table 2. Capital1 2 and water requirement by quarter and activity; for small 
farms in Chincha Valley 

xl x2 X3 X4 X5 x6 "1.7 X9 X9 xlO xll 
Bean 

Squash Peas Sweet Tomato Hybrid with Alfalfa Cotton Lima Corn Yuca 
Potato corn corn Beans 

CAPITAL 
1st quarter 3611 0 0 2141 0 0 0 6235 2640 0 1299 
2nd quarter 3976 1163 1284 6707 0 860 1834 7138 3394 1212 1541 
3rd quarter 790 3786 2585 0 2229 2718 2486 1395 3814 3642 184 
4th quarter 2487 0 0 0 4904 0 3138 5133 4182 0 926 

WATER 
1st quarter 4 0 0 2 0 0 2 4 2 0 2 °' 2nd quarter 2 2 2 1 0 5 2 0 2 5 2 QI) 

3rd quarter 5 5 2 0 5 25 2 3 2 4 2 
4th quarter 4 0 0 0 2 4 2 5 2 0 2 

l The values are expressed in sales. 
2The values are expressed in irrigations for small fa.rm, 288 cubic meter per 

irrigations. 
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Resource reatriction•. In tl1is model we have capital, 

land, labor and vat$r as the most relevant restriction•. The 

difference between Amorin's model and the one presented 

here is that ve considered the restriction quarterly. We 

taken the median value of Amorin'e inonthly data of input-
have~ 

output coofficionta and resourco coefficients. 

(a) Capital. The Danco de FoNento Agrop cuario del 

Peru limit• capital per ~onth to 72 percent of the value of 

tho land divided by 12 months. ~asuminq the value of land to 

be 50,000 sales per hectar (l, pp. lO ) 1 then median of 

capital available per quarter will bet 

50,000 x r;nd x .72 2 41000 x Land 

where IAnd ia equal to the numb r of hectarea; mere details 

about capital availability in Peru can be found in (31). The 

requiresent of capital by quarter for each activity is preaented 

in Table 2. 

(b) Water. ThG median quarterly restriction of water is 

shown in Table 2. The requirement• of irrigations per crop• 

are preaented in T ble 4. 

(c) Labor. Ataorin'e model (l, pp. 24-25) did not conaider 

hired labor1 instead an average of six me bers per family was 

aeaUJQed. In our model a axi~um of 4BO hours of labor a• a 

median per quarter was considered. Requirements of labor for 

each crop are pro•ent.Gd in Table 3. 



www.manaraa.com

Table 3. Labor1 requirement by quarter and activity for small farms in Chincha 
Valley 

xl x2 x3 x, X5 x6 X7 x8 X9 xlO xll 

Squash Peas Sweet Tomato Hybrid Bean Alfalfa Cotton Lima Corn Yue a potato corn with beans corn 
lat quarter 52 0 0 58 0 0 10 28 26 0 2 

2nd quarter 2 5 6 77 0 0 12 82 57 86 2 

3rd quarter 0 78 6 0 10 52 12 35 57 0 42 

4th quarter 42 0 0 0 38 104 52 31 42 0 34 

1 are expressed in hours. 
...., 

The values 0 
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Table 4. Resources avftilable by quarter1 

lat 

2nd 

3rd 

4th 

Capita.12 Water3 Labor4 Land 

quart or 3,000 x L 0 cso L 

quarter 3 , 000 x L 10 4aO L 

quartor J,oon x L 12 480 L 

quarter J,000 x L 7 480 L 

1capital and land arc par~ters in function of the numb~r of hectare••· 
2The values are expressed in eol ea. 
3Tne val~es are expressed in irri9ations, 288 cubic metera per irrigation. 
4It asuumea 2 worker x 8 hours x 30 days. 
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(d) Land. The level of productivity of the soil is the 

actual average obtained in the Chincha Valley. Three different 

size qroupa of a typical farm (e.9. 4 hectareae, 8 beotareas 

and 16 hectareas) were used. 

AJJ it is seen the data have been primarily taken trom 

Amorin's work. There are some variations however in the linear 

proqramming formulations, e.g. our problem limit• the area in 

the valley allocated to yuca to one-fourth of the available 

land and not to one hectarea as in Amorin'• proqrams. 

For our linear programming formulations we have pre•ented 

in the next •ection the following characteristics, e.9., the 

optimal solution, the second beat and third best solution, 

the area of the triangle given by those three point• and 

their reapective dietances. 1 The second best, third beet and \ 
the area of the triangle provides an initial (non-probabilistic) 

measure of risk in the aenee that they indicate the extent to 

which net total income may fall, in the event net price• vary, 

other restrictions being equal. 

where 

We can build a vector with the following component• 

v • (z, AB, AC, A) 

z is tho objective function value of the program, AB is the 

euclidean distance between the optimal aolution and the second 

best solution, AC the euclidean distance between the optimal 

solution and the third beat solution, A is the area of the 
1see Appendix for the calculation of triangle and distances. 
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triangle, with extreme points aa optimal, second best and 

third beat solutions. 

Define vectors v(l), v< 2> , ••• ,v(k) defined above fork 

linear programming models 

z ( l) z (2) z (k) 

v(l) • AB v(2) • AB v(k) • AB , 
AC AC AC 

A A A 

then a partial ordering (introduced by the decision maker) 

defined over aet• v(k) makes subjective comparison between 

two problem comparable (thi• is comparable to the concept 

of ef fioiency in the sense of Koopmans for linear prograDD.ing 

problem• with a vector objective function). 

4.2. Static Cases to be Studiedz 
I, II, III, IV, V 

Here we point out the most important cases, we have atudied 

usin9 linear programming techniques; it ia static in the aenae 

that we have taken only one obaervation, of the ci' aij' and bj 

coefficients of the qeneral linear programming problem. 

Case I. Optimum farm plan assuming 4 hectareaa of farm 

and 12,000 sole• of monthly average restriction of capital 

and the restrictions of water and labor aa indicated in 

Table 41 no restriction on land to be allocated to yuca. 

The most binding restriction ia land in the 'th quarter, 

we have two activities, tomato and yuoa. The value of 
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the objective function is 51,331.367 soles. The reaulta 

in detail are indicated in Table 5. 

case II. Optimum farm plan a•aumin9 4 hectareas of farm 

and 12,000 soles of monthly average restriction of capital 

and the restriction of water and labor aa indicated in 

Table 4J yuoa has an upper brand of one hectarea. 

The moat binding restriction is alao land in the 'th 

quarter, we have four activities; tomato, lima beans, 

corn, and yuca. The value of the objective function is 

46,801.289 soles. 

The reaults in detail are indicated in Table 6. 

Caae III. Optimum faxm plan aasumin9 8 bectareas ot 

farm and 24,000 soles of monthly average restriction of 

capital and tho reetriction of water and labor as indi-

cated in Table 41 yuca has an upper bound of 2 bectareaa. 

The moat binding restriction ie water in the aecond 

quarter, we have four activitie•1 sweet potato, tomato, 

hybrid corn, and yuca. The value ot the objective 

function is 70,494.023 soles. 

The results in detail are indicated in Table 7. 
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Table s. 
Activity 

code 

Value of 
the 

program 
(z) 

Optimum farm plan as indicated in case I 

Activity 
description 

Optimal solution (A) Second best solution Third best solution {C) 

tomato 

lima beans 

yuca 

level of (B) 
activity level of activity 

(hectareas) (hectareas) 

0.50001 

3.49997 

51331. 367 

Area of t he triangle 
Distance 
Distance 
Distance 

1.12969 

2.87030 

50397.695 

ABC • .95729864 
AB • .89049447 
AC • 2.48264410 
BC • 2.17847250 

level of activity 
(hectareu) 

0.50001 

1.75550 

1.74448 

48545.23 
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Table 6. Optimum farm plan aa indicated in case II 
Activity Activity Opt!iiial solution (A) Second beat solution Third best solution 

code description level of activity (b) Level of activity (C) Level of activity 

Tomato 

Lima beans 

Corn 

Yue a 

Value of the 
program (z) 

(hectareas) (hectareas) (hectareas) 

.24895 

2.49999 

0.25105 

l.00000 

46801. 289 

Area of the triangle 
Distance 
Distance 
Distance 

2.49999 

o.soooo 
1.00000 

46243.516 

ABC • 
AB • 
AC • 
BC • 

0.035933215 
.35206836 
.51234245 
.23570681 

2.33332 

0.66667 

l.0000 

45887.500 
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Table 7. Optimum farm plan as indicated in case III 

Activity 
code 

Activity 
description 

Sweet potato 

Tomato 

Hybrid corn 

Yue a 

Value of the 
program (z) 

Optimal solution(A) Second best solution Third best solution 
leYCic~~r!ifivity (B) 11~iat~ie!ifivity (C) LeYEic£ir:g;f vity 

2.42493 

2.84986 

0.96997 

1.1501.t 

70494.023 

Area of the triangle 
Distance 
Distance 
Distance 

2.00000 

2.00000 

O.ROOOO 

2.00000 

67785.625 

ABC • .50991368 
AB •l.28606990 
AC •l.60185150 
BC • .79999995 

2.00000 

2.00000 

2.00000 

62961.602 
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Table 8 . 

Activity 
code 

X3 

X4 

X5 

xll 

Optimum farm plan as indicated in case IV 

Activity Opti~al solution(A) Second best solution(B)Third ~~~t solution 
description level of activity level of activity level of activity 

Sweet potato 

Tomato 

Hybrid corn 

Yue a 

3.0 

4.0 

1.2 

3.0 

4.0 

1.25 

0.50000 

3.5000 

Value of the 
program (z) 74159.258 66923.24 59990.352 

Area of the triangle ABC • 3.14999580 
Distance .1'D • 1.19999890 
Distance AC • 5.38539510 
Distance BC • 5.25000000 
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Table 9. Optimum farm plan as indicated in case V 

Second best solution(B) Activity Activity Opt.imal solution (A) 
level of activity code description le~l of acttvity (bectoreas) ectareaa 

X3 Sweet potato 2.42691 1.56249 

X4 Tomato 2.85381 1.12500 

X5 Hybrid corn 0.97076 0.62500 

X7 Alfalfa 0.14618 1.87500 

xll Yue a 1.00000 1.00000 

Value of the 
program (z) 70013.359 58670.664 

Area of the triangle ABC • 2.835961 
Distance AB • 2.6161737 
Distance AC • 2.7052746 
Distance aa • 2.3967455 

Third best solution 
(C) level of aot.ivity 

(hectareas} 

2.16666 

1.66666 

0.83333 

1.00000 

56098.477 
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Table 10. Simplex multipliers 

Restrictions Case I Case II Case III Case IV Case V 

l Capital lst quarter 
2 2nd quarter .4070 .5487 1 . 0999 
3 3rd quarter 
4 4th quarter 
s Water lst quarter 297.5049 463.8972 130.3496 
6 2nd quarter 190.5301 225.7562 155.1420 
7 3rd quarter 120.6000 120.6000 120.5999 
8 4th quarter 74.1376 62.3200 
9 Labor lat quarter 
10 2nd quarter 
11 3rd quarter 
12 4th quarter 
13 Land 1st quarter 
14 2nd quarter co 
15 3rd quarter 0 

16 4th quarter 1153.553 880.1018 
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Case IV. Optimum farm plan assuming 16 hectareas of farm 

and 48,000 soles of monthly average restriction of 

capital and 48,000 soles of monthly average restriction 

ot capital and the restriction of water and labor aa 

indicated in Table 41 yuca has an upper bound of 4 

hectareas. 

The most binding restriction is water in the second 

quarter, we have three activities; sweet potato, tomato, 

and hybrid corn. The velue of the objective function is 

74,159.258 soles. 

The results in detail are indicated in Table 8. 

Case V. Optimum farm plan assuming 8 hectareaa and 24,000 

soles of monthly average restriction of capital and the 

restriction of water and labor as indicated in Table 4; 

yuca has an upper bound of l bectarea. 

The moat binding restriction is water in the second 

quarter, we have five activities; sweet potato, tomato, 

hybrid corn, alfalfa, and yuca. The value of the objective 

function is 70013.359 soles. We will use this caae as 

the basic starting solution for the next case. 

In Table lO we show the simplex multiplier associated at 

the non-structural variables tor the 16 restrictions for 
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every case studied in this section. 

4.3. A Chance-Constrained Programming, Case VI 

Here we have a chance-constrained problem: 

Max f (4.3.l) 

subject to 

Prob (c'x~f) • a (4.3.2) 

(4.3.3) 

(i•l,2, ••• 16 j•l, 2, ••• 11) 

Case VI is an optimum farm plan assuming 8 hectareas with 

an upper bound of l hectarea of yuca. The restriction indi-

cated by (4.3.3) are the same as in case V: The c vector are 

the net incomes given in Table 1 and the standard deviation 

arel alao given in Table 1. 

As we have seen in section 2.3 wo can arrive at the 

following equivalent quadratic programming model. 

• c•x -

subject to 

Ax<b 
x>o 

g_ 
2R x'Vx (4.3.4) 

where q • I-1 (a) • 2.33 tor a•.01 if we assume that the 

function I(a) is a normal distributed function1 , and R is 

11t might approximated the Poisson distribution to a 
normal distribution without too much error. 
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evaluated by the following iteration procedure (21, pp. 192): 

Step 1. Start by solving the linear proqrammin9 problem, 

i.e. make the quadratic part equal to zero in (4.3.4), 

obtain an initial value R, as R
0 

and store it in R. 

R • Ix* 0 0 v XO + R 

Step 2. Using this R, solve the equivalent quadratic 

problem (4.3.4) if the new value of f 11 does not differ 

too much from the previous one, stop the problem. We 

have used the following stopping rule: 

IRn-1 - Rn l 
R ~£ 

n 
where c•.003 in our case. 

For solving the quadratic programming problem we used 

the ZORILLA program (42) using the IBM 360 modal 50 of the 

I.s.u. Computer Center, the average time was l.8C minutes by 

iteration. In Table 10 we show the iterations to solve it. 

In Table 12 we indicate the Lagrange multiplier for the 

3 iterations. The moat binding restriction is the yuca upper 

bound of 1 hectaraa. The value of objective function is 

69533.455 soles and we have six activities ; BWeet potato, 

tomato, hybrid corn, alfalfa, lima beans, and yuoa. 



www.manaraa.com

Table 11. Katooka's iteration procedure 
Value 

Iter- lRn-1-Rnj of Sweet 
a ti on Rn R-IJPvi the potato 

o o program X3 

L.P. 70013.359 2.42691 

1st 391.9881 . 69533.427 2.413556 

2nd 0.005 389.8882 69533.427 2.413556 

3rd 0.002 389.0313 69533.455 2.413569 

Tomato Hybrid Alfalfa 
corn 

X4 X5 x, 
2.85381 .97076 .14618 

2.8227112 .9654223 .0936442 

2.8227116 .9654223 .0936442 

2.8271392 .9654278 .0936934 

Lima 
bean 

X9 

.07924418 

.07924418 

.0791629 

Yue a 

xll 
1.0000 

1.0000 

1.0000 

1.0000 

<XI .. 
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Table 12. La9ranqe multiplior aa•ociated with the Q. P. 

Code Reatriction lat 2nd 3rd 
iteration iteration iteration 

Cl3 Capi~al 2nd quarter .11,55467 .1145546 .ll.&55460 

Cl6 WAtcr lst quarter 109.01215 109.01215 109.01202 

Cl7 Water 2nd quarter lf7.96713 147.96179 147.96715 

Cl8 Wator lrd quarter 119.91306 119.91306 119 . 913:>6 

C28 Yuca < 1 hectarea 363. 83066 363.83066 36J. 3097 
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5. SUMMARY AND CONCLUSION 

1. A brief survey of the main theoretical results on risk 

programming is presented in the first three chapters. 

2. For our empirical illustration we have used the data 

of an optimal farm in Chincha Valley. These data were pre-

viously analyzed by Amorin (1, pp. 27-49) for his studies on 

linear proqrrunminq. 

In an ordinary linear programming problem with a given 

set of statistical data, it is not known generally how 

reliable is the optimal basic solution. In our five cases of 

linear programming we have only had one sample observation . 

It could be possible to indicate a more qeneral method of 

reliability analysis for testing the sensitivi ty of the optimal 

basic solution and other basic solution, in terms of expecta-

tion and variance when more sample observations are available. 

The first, second, and third best solutions are estimated 

for our linear programming models assuming the vector• of net 

income, resources and input-output matrix to be constant. 

In every cnse studied the three alternatives are 9iven 

to the farmer, he could decide vhat level of activities would 

satisfy hia satisfying approach. in tne event the optimal 

(i.e. the first beet) solution is considered more risky. 

In every case the trian9le area gives us a measure of 

riak when we change from one extreme point to another. If we 

could have more sample values of the elements cj (the price of 
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the crops) it would be possible to see clearly our odds in 

making an optimal production planning. In thia sense the 

second and third best solution specify suboptimal solutions. 

We also give the simplex multipliers associated with 

every optimal basic solution (first best). The simplex multi-

plier n1 , n2 , n3 , • • • ,n16 can be used to compute the relative 

cost factor c. from the corresponding column of the original 
J 

system by the formula 

cj•cj - <n1a1j+Il2a2j+ •••••• +nl6al6j) 

3 . A chance-constrained version of the linear programnlinq 

model is then considered to see the sensitivity of the solu-

tions and an equivalent quadratic program is formulated. Al-

though the value of the program of the equivalent quadratic 

problem and level of activities do not 4i ffer significantly 

from the linear programming problem; we see that the linear 

programming solutions satisfy the chance constraints to a 

marked degree. However, if the tolerance measure (a) is varied, 

or the sampling distributions of the net unit returns are dif-

ferent from Poisson, results different from the above are 

quite expected. 

4. A few concluding remarks may be added about the limita-

tions and possible generalizations of our empirical approach. 

First, the variation of parametere (e.g. net prices} in our 

model is not specifically estimated for lack of comparable and 

homogeneous data . However, given more time and more data, 
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these parameters could be statistically estimated with more 

precision and then the effects of alternative distributions 

like normal or chi-square, to on the optimal decision rule 

could be compared and evaluated. Second, the second best, 

and third best solution with the area of the triangle could be 

uaed as a probabilistic measure for analyzing the sensitivity 

of any linear programminq problem, provided statistical distri-

bution of the parameter is known or estimated. Third, it can 

be argued that different levels of tolerance measure (i.e. 

different a) could be associated with the objective function 

and with different restrictions to see the 8 implicit cost" of 

flexibility in the sense of infeasibility. A scope for com-

paring safety first method with the chance constrained model 

exists for any feasible linear pr09ram and this seems to b a 

fruitful line of future research. 
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8. APPENDIX 

The area of a triangle with sides a,b,c is 

A• ls(s-aT(s-b) (s-c} 

where 

s • i<a+b+c) 

In our problems we have points defined by n coordinates so we 

assume euclidean distances, for example if point A is defined 

by (a1 ,a2 , ••• ,an) and point Bis defined by (b1 ,b2 , ••• ,bn) 

or 

D • 

The following is a FORTRAN IV program to make possible the 

calculation. 
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Table 13. Portran prO<]r c lcula te t he area of trianqle 

C P~GAAM ~ CALCULATE TOP' Aru:A $61' h TP.IANCL!, CI~r. 'fil N-C9)¢Rt>I 
C nAT S ¢P THE EXTR£ME P¢1NT A,B,C 

DI$'l<ISISIJU A(SO), U(SO), C(SO) 

C READ A CARD •t'l'H TI!}; NU?<lllER SIJP C¢¢RDI NATl?S 
nEAD (1, 2) ~P~l~ T 

2 ~R:· AT (I3) 
C SLT ALL TRE Ps;IJIUTS T5l} i ~ 

l Dsa 3 I•l, NP~IUT 
A(l) • o. 
U(I) - o. 

3 C(I) - o. 
Dl • o. 
02 - o. 
03 - o. 
READ VALUES C ¢F TUI: c¢9'RDINATZS l\ 1 B ,C I "DIFICJ\TI~ ' I NO J'.• l S-2 

C C • 3, I ND • 4 ENDS • S J-;T 91 VALU-..:S 

4 R! (l, 5) I?D,~,X 

s F¢RMA'l' (I2, 2X, 13, 2X, Pl2.6) 
6 A(JC.) • X 

Gt2S ~ 4 

7 B (Jt) • X 

Ggj 'l'Sf 4 



www.manaraa.com

Table 13 (Continued) 

a C(K) - x 
G¢ T~ 4 

9 0¢ 10 I•l, NP{6INT 
Dl•Dl + (A(I)-B(I))**2 
02•02 + (A (I) -C ( I)) * * 2 

10 03•03 + (B(I)-C(I))**2 
DEl=rSQRT (01) 

OE2•SQRT(D2) 
OE3•SQRT(D3) 
P • (OEl + OE2 + DE3)/2. 
AREA• SQRT(P*(P-DEl)*(P-DE2)*(P-DE3)) 

C TITLE WRITil~G 
WRITE(3,ll) NP~INT 

11 F¢RMAT ( 1 l', 3JX, 'PP.¢<;RAM. ~ CALCULATE THE AREA StJP A TRIANGLE IN', 2 

lX,13,' C~ROINATES',////,'0',30X,'I',20X,'A(I) ',l6X,'D(I)',27X,'C 
2(1). ,////) 

D~ 12 K•l, N\>SlJINT 
12 WRITE (3,13) K, J\(~), B(K), C(K) 

lJ F~RMAT ( 1 0',27X,I3,13X,El4.8,7X,Bl4.8,15X,El4.8) 
~~RITE (3,14) DEl, OE2, Ot:3, AREA 

14 ~ruL~T ('O',///,lSX,'DIST A-B',2X,El5.R,10X,'DIST A-C',2X,El5.9,l 
lOX, 'DIST B- C', 2X, El5 . 8,///'0'.3SX,'AREA ~F TRIANGLE EQUI\L Tflf 
2, Bl5.8,// , ' 0',30X, '*~*********** .....•...... , 
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_T_ab_l~_l_l__.(~C_o_nt_i_n_ue __ d~>----~~~--·----~~~·-~~~·~~~~~~~~~~~~~ 

C A NEW TllIANOL!! TliEN CW:.Clt 
nEAD (l,15) . P~INT 

15 f'Jl'RMAT (I3) 
IF (NP¢I ) 16,16,l 

16 s~ 0001 
END 
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